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A NOVEL APPROACH TO MEASURING CRITERION WEIGHTS IN
MULTIPLE CRITERIA DECISION MAKING: CUBIC EFFECT-BASED
MEASUREMENT (CEBM)

Furkan Fahri Altintas!

ABSTRACT

In the realm of multi-criteria decision making (MCDM) literature, various approaches exist
for quantifying the weight coefficients of criteria. In this study, unlike other methods of
calculating weight coefficients, a mathematical model based on cubic interactions among
criteria has been proposed (CEBM-Cubic Effect-Based Measurement). This model aims to
enrich the MCDM literature while providing a means to compute weight coefficients of
criteria. The dataset employed in this investigation comprises criterion values extracted from
the Global Innovation Index (GII) evaluations for 19 G20 countries. Through the analysis
outcomes, the efficacy of the proposed methodology in objectively deriving criteria weight
coefficients for different nations is demonstrated. Furthermore, a comparative analysis is
conducted, juxtaposing the proposed method with other objective weighting techniques
(ENTROPY, CRITIC, SD, SVP, LOPCOW, and MEREC) as part of a sensitivity,
comparison, and simulation analyses. The CEBM method is a credible, reliable and stability
objective criterion weighting method, as demonstrated by its sensitivity, comparison, and
simulation analyses. The simulation analysis, in particular, showed that the CEBM method is
effective in distinguishing the weights of the criteria and is stable across different scenarios.
In conclusion, based on all of these evaluations, it is thought that the CEBM method can be

used as an objective criterion weighting method and the proposed methodology will make
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substantial contributions to both the domain of cubic functions and the broader MCDM

literature.

Keywords: CEBM, cubic function, cubic effect value.

COK KRITERLI KARAR VERMEDE KRIiTER AGIRLIKLARINI
OLCMEYE YONELIK YENI BiR YAKLASIM: KUBIK ETKI TABANLI
OLCUM (CEBM)

oz

Cok kriterli karar verme (CKKV literatiiriinde, kriter agirlik katsayilarini hesaplamak icin
cesitli yaklagimlar mevcuttur. Bu c¢alismada, diger agirhik katsayilar1 hesaplama
yontemlerinden farkli olarak, kriterler arasindaki kiibik etkilesimlere dayali bir matematiksel
model &nerilmistir (Kiibik Etki Tabanli Olgiim). Bu model, kriter agirlik katsayilarini
hesaplamak i¢in bir ara¢ saglarken CKKYV literatiiriinii zenginlestirmeyi amaclamaktadir. Bu
arastirmada kullanilan veri seti, 19 G20 iilkesi icin Kiiresel inovasyon Endeksi (KEI)
degerlendirmelerinden elde edilen kriter degerlerini icermektedir. Analiz sonuclari, dnerilen
metodolojinin farkli iilkeler i¢in kriter agirlik katsayilarini objektif olarak tliretmede
etkinligini gostermektedir. Ayrica, Onerilen yontem ile diger objektif agirliklandirma
yontemleri (ENTROPY, CRITIC, SD, SVP, LOPCOW ve MEREC) arasinda duyarlilik,
karsilagtirma ve simiilasyon analizleri kapsaminda karsilagtirmali bir analiz yapilmistir.
CEBM yontemi, duyarlilik, karsilastirma ve simiilasyon analizleri ile gosterildigi lizere,
giivenilir ve kararli bir objektif kriter agirliklandirma yontemidir. Ozellikle simiilasyon
analizi, CEBM yonteminin kriterlerin agirliklarii ayirt etmede etkili oldugunu ve farkli
senaryolarda kararli oldugunu gdstermistir. Sonu¢ olarak, tiim bu degerlendirmelere gore
CEBM yonteminin objektif bir kriter agirliklandirma yontemi olarak kullanilabilecegi ve
onerilen metodolojinin hem kiibik fonksiyonlar alanina, hem de CKKYV literatiiriine 6nemli

katkilar saglayacagi diistiniilmektedir.

Anahtar Kelimeler: CEBM, kiibik fonksiyon, kiibik etki degeri.
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1. INTRODUCTION

In the context of multi-criteria decision-making (MCDM) involving various criteria
and distinct decision options, a pivotal aspect is the assessment of significance levels or
weight coefficients assigned to the criteria. Given that each criterion bears a distinct weight,
the arrangement of decision alternatives is inherently influenced by the significance attributed
to these criteria. Hence, the process of attributing weightages to the criteria in alignment with
their impact on decision alternatives assumes paramount importance in the practical
implementation of the MCDM technique. To elucidate further, criterion weighting denotes a
procedure wherein distinct weights are allocated to each criterion to accurately mirror their
relative significance within the decision-making process. These weightings are contingent
upon various approaches, encompassing expert evaluations, surveys, or statistical analyses.
Once the criterion weights are ascertained, they serve as the foundation for appraising
decision alternatives based on their comprehensive performance. Undoubtedly, the task of
criterion weighting constitutes a pivotal stride within the MCDM process. Its essence lies in
ensuring equitability and objectivity throughout decision-making, thereby enabling an

authentic valuation of decision alternatives.

Within the realm of MCDM literature, a plethora of techniques exists for quantifying
weight coefficients. In tandem with these established methodologies, the current study has
pioneered a novel approach to compute objective weight coefficients for variables. This
innovative technique operates within the framework of cubic relationships between variables,
utilizing cubic functions. The primary thrust of this study resides in the scrutiny and
harnessing of cubic functions' analytical and modeling prowess in determining weight
coefficients. Cubic functions, renowned for their efficacy in resolving diverse problems across
various domains, occupy a pivotal role in this investigation. In addition, in the MCDM
literature, there are limited methods that explain the weight coefficients of criteria by basing
them on nonlinear functions between criteria and the interaction structure between criteria.
Therefore, the other important motivation for the development of the method is the ability to
provide policies for the improvement of specific criteria or criteria through the interaction

structure between criteria that can be detected by the CEBM method in complex problems.

Consequently, the study's objectives unfold in two facets. Firstly, it endeavors to
introduce an innovative paradigm for assessing weight coefficients concerning decision
alternatives in the domain of MCDM. Secondly, it aims to kindle a nuanced comprehension of

the capabilities inherent to cubic functions, recognizing their aptitude in dissecting and
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resolving intricate predicaments. To this end, the literature review segment of the study
expounds upon objective weighting methodologies and delves into the mechanics of cubic
functions. The subsequent section outlining the methodology delineates the research dataset
and articulates the proposed approach. In the results segment, discerning observations are
drawn and meticulously deliberated, encapsulating the quantitative outcomes gleaned within

the purview of the study's ambit.

2. LITERATUR REVIEW

When making decisions, it is important to consider the relative importance of different
criteria. This is because different alternatives may perform differently on different criteria,
and it is necessary to compare their overall performance in order to make the best decision

(Saaty, 1997).

Historically, the assessment of criteria significance has relied on weight coefficients,
which can be ascertained either through subjective or objective means. Subjective weight
coefficients are contingent upon the evaluator's personal experiences and judgments, whereas
objective weight coefficients are derived through mathematical models. Subjective weight
coefficients are frequently gleaned from the insights of experts in the field. Nonetheless, it's
imperative to acknowledge that expert perspectives might carry inherent biases, thereby
introducing potential inaccuracies into the decision-making process due to the subjective
nature of these evaluations. In contrast, objective weight coefficients remain impervious to the
decision-maker's predispositions or uncertainties. Consequently, these coefficients are
generally regarded as more precise in comparison to their subjective counterparts (Arslan,
2020; Bardakei, 2020: 20; Demir, 2020), as they are grounded in empirical analysis and

remain insulated from personal inclinations.

In summary, the precise determination of criteria's relative significance stands as a
pivotal stride within the decision-making process. Both subjective and objective weight
coefficients serve as tools to gauge the relative importance of criteria. However, it is widely
acknowledged that objective weight coefficients generally yield a higher degree of accuracy
compared to their subjective counterparts. The literature on MCDM showcases an array of
objective weighting methodologies. Among these techniques are ENTROPY, CRITIC
(Criteria Importance Through Intercriteria Correlation), CILOS (Criterion Impact Loss),

IDOCRIW (Integrated Determination of Objective Criteria Weights), SD (Standard
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Deviation), SVP (Statistical Variance Procedure), SECA (Simultaneous Evaluation of Criteria
and Alternatives), MEREC (Method Based On Removal Effects of Criteria), and LOPCOW
(Logarithmic Percentage Change-driven Objective Weighting).

The ENTROPY method is based on the concept of entropy, which measures the
disorder or uncertainty of a system. In this sense, the more disorder a criterion has, the more
distinct it will be from others and become the most important criterion. Therefore, the
ENTROPY method can be effectively used in the decision-making proces In this method,
after preparing the decision matrix, the standard values of the decision matrix and the entropy
measurement of the criteria are used to determine the entropy weights of the criteria. The
entropy weights are calculated as the inverse of the entropy value The entropy weights are a

measure of the relative importance of the criteria (Aygin, 2019).

The CRITIC method is a MCDM approach designed to derive criterion weights
through an examination of their interrelationships. This method commences by constructing a
decision matrix, which delineates the performance of various decision alternatives across
distinct criteria. Subsequently, the decision matrix values undergo normalization, facilitating
their transformation into a unified scale within the 0 to 1 range. The ensuing step involves an
analysis of the criterion relationships, predicated on the normalized values. This analytical
process is instrumental in identifying any inconsistencies or contradictions that may arise
between criteria. The resolution of these contradictions is executed by leveraging the concept
of standard deviation as a weighting mechanism. The ultimate outcome of the CRITIC
method is the computation of criterion weights, which are inversely proportional to the
identified contradictions. This configuration ensures that criteria with higher contradictions
hold diminished weightage, aligning with the endeavor to achieve a coherent and balanced

decision-making framework (Diakoulaki, Mavrotas and Papayannakis, 1995).

The CILOS method constitutes a MCDM approach designed to ascertain criterion
weights grounded in the variance between other criteria's ideal maximum and minimum
values. The initial step of this method entails the computation of a decision matrix, a
tabulation that expounds the performance of decision alternatives across diverse criteria.
Subsequently, the values within the decision matrix are subjected to normalization, facilitating
their transformation into a standardized range spanning from 0 to 1. Subsequent to
normalization, a square matrix is constructed, capturing the influence each criterion wields
upon the remaining criteria. This step quantifies the impact of each criterion within the

context of the others. Subsequently, a weight system matrix is formulated, shedding light on

155



Nicel Bilimler Dergisi / Cilt: 5, Say1: 2, Aralik 2023
Journal of Quantitative Sciences / Volume: 5, Issue: 2, December 2023

the relative significance of individual criteria within the overarching decision framework. The
crux of the CILOS method culminates in the determination of criterion weight coefficients.
This is achieved through the resolution of a system of linear equations, ensuring that the
resulting weights encapsulate the intricate relationships between the criteria (Zavadskas and

Podvezko, 2016; Sel, 2020).

The IDOCRIW method presents a hybridized approach within the domain of MCDM,
amalgamating the principles of both the ENTROPY and CILOS methodologies. The central
tenet of this method revolves around the assessment of relative impact in the context of an
absent index. To outline its operational procedure, the IDOCRIW method initially computes
criterion weights utilizing the ENTROPY and CILOS techniques, drawing upon the values
inherent in the decision matrix. The resultant ENTROPY and CILOS weights are
subsequently amalgamated, yielding the comprehensive IDOCRIW weights, which
encapsulate the intricacies of both methodologies (Zavadskas and Podvezko, 2016; Ecer,

2020).

The concept of standard deviation (SD) finds its application as a statistical metric that
gauges the extent of dispersion among values within probability and statistics. An alternative
definition characterizes it as the square root of variance — the arithmetic mean of the squared

disparities between the mean and individual data points.

In the SD methodology, the determination of criterion importance levels or weight
coefficients hinges on assessing the normalized values of the criteria. This approach takes into
account the significance of scale wvariation in computing the weight coefficients,
acknowledging its role in the process (Demir et al. 2021). The SD method facilitates the
objective calculation of criterion importance degrees, relying on the standard deviation value
attributed to each criterion (Diakoulaki et al. 1995). Operationalizing the SD method involves
straightforward mathematical operations and is devoid of criterion-specific constraints (Wang,

2003).

SVP stands as a target weighting technique aimed at generating objective weights for
the computation of criterion weights or significance levels (Nassar, 2019; Demir, Ozyalgin
and Bircan, 2021). Within this method, the weight values assigned to criteria undergo an
objective quantification, thereby remaining impervious to the influence of expert viewpoints
and subjective assessments. Furthermore, the method's approach to calculating criterion

weights hinges on the variance metrics attributed to the criteria (Giilenger and Tiirkoglu,
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2020). Upon determining the variance values associated with the criteria, the weights for each
criterion are computed by dividing the individual criterion's variance value by the aggregate
variance value encompassing all criteria. In essence, the SVP method emerges as an objective
weight determination technique, facilitating the calculation of criterion weights or importance

levels through the utilization of variance values attributed to the criteria (Odu, 2019).

The SECA technique made its entry into the realm of Multi-Criteria Decision Making
(MCDM) literature in 2018, introduced by Keshavarz-Ghorabaee et al. (2018). This method
possesses a distinctive attribute that sets it apart from other MCDM techniques: its capability
to simultaneously ascertain both criterion weight values and decision alternative performance
in relation to those criteria. This distinctive feature renders the SECA method unique within
the landscape of MCDM methodologies (Keshavarz-Ghorabaee et al. 2018). The initial stride
of this method encompasses the creation of a decision matrix. Subsequently, the values within
this matrix undergo a process of standardization. The third stage involves the identification of
conflict degrees, followed by the determination of standard deviation values in the fourth step.
Moving forward, the fifth step computes standardized values by amalgamating the results
derived from the standard deviation and relationship assessments. The conclusive stage
involves the solution of a multi-objective linear model (Keshavarz-Ghorabaee et al. 2019:
190-191). This model comprises three distinct objective functions. The foremost objective
aims to maximize the scores of decision alternatives, while the second and third objectives
focus on minimizing both intra-criteria and inter-criteria deviations. In this intricate
framework, the model seeks to minimize the disparity among criterion weight reference
points, thereby ensuring the elevation of each decision alternative's performance to its utmost

potential (Ecer, 2020).

The MEREC method, classified under the multi-criteria decision analysis (MCDA)
umbrella, serves as a mechanism to deduce criterion weights. The method unfolds through a
sequence of steps, commencing with the creation of a decision matrix — a tabular
representation depicting the performance of decision alternatives across distinct criteria.
Subsequent to this, a normalized decision matrix emerges, delineating the performance of
decision alternatives across criteria while being scaled within the range of 0 to 1. Moving
forward, the total performance values of decision alternatives are computed utilizing a
structure rooted in natural logarithms. This entails the summation of natural logarithms of a
decision alternative's values across all criteria. Subsequently, changes in performance values

of other decision alternatives are evaluated, employing the natural logarithmic approach. This
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pertains to calculating the discrepancy between a decision alternative's performance value on
a specific criterion and its corresponding value in the normalized decision matrix. The
culmination of the MEREC method is the determination of criterion weight values, hinging on
the calculation of subtraction effects or the sum of absolute deviations. This procedure entails
the computation of a criterion's weight value as the summation of absolute values of changes
in performance values of other decision alternatives corresponding to that criterion. Although
relatively nascent, the MEREC method has demonstrated efficacy across diverse applications.
It proves particularly adept in scenarios characterized by interrelated criteria, aiming to
minimize disparities between the most and least significant criteria (Keshavarz-Ghorabaee et

al. 2021).

The LOPCOW method, an acronym for Logarithmic Percentage Change-driven
Objective Weighting, emerges as an objective weight determination approach that
amalgamates information spanning distinct dimensions to derive fitting or ideal weights. This
method is further designed to attenuate disparities between criteria of varying importance
levels, while concurrently acknowledging the interconnectedness between criteria. Initiating
its course, the LOPCOW method prepares a decision matrix, a tabulated representation
elucidating the performance of decision alternatives concerning diverse criteria. Subsequently,
values within this decision matrix undergo normalization, thereby standardizing values within
a range of 0 to 1. Furthering the procedure, the calculation of the average square value,
expressed as a percentage of the criterion's standard deviation, takes place. This computation
serves to mitigate discrepancies (gaps) arising due to the scale of data. The subsequent
derivation of weight coefficients for criteria rests on the inverse of this average square value.
Although relatively recent, the LOPCOW method has demonstrated its effectiveness across an
array of applications. It particularly excels in contexts marked by criterion interdependencies,
where bridging gaps between highly and less significant criteria assumes paramount

importance (Ecer and Pamucar, 2022).

Within the domain of MCDM literature, the objective weights assigned to criteria
unveil two pivotal characteristics. The first hallmark centers on the disparity in performance
exhibited by decision alternatives across each criterion. This quantifiable measure denotes the
divergence between the highest and lowest values among criteria. The second characteristic
pertains to the individuation or contention prevailing among criteria. This dimension
encapsulates the extent to which criteria diverge from one another. By harnessing and

leveraging these inherent characteristics, which lie embedded within the data characterizing a
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multi-criteria problem, decision-makers stand to gain substantial insights within the decision-
making process. For instance, when the objective weights of criteria underscore a heightened
degree of contention among them, it may prompt decision-makers to accord priority to certain
criteria or opt for an alternative decision-making methodology. These dual characteristics of
objective criterion weights wield profound significance for decision-makers throughout the
MCDA process. The comprehension of these characteristics equips decision-makers to
formulate improved choices that harmonize more effectively with their objectives (Ecer,

2020).

Apart from the aforementioned attributes, criteria also possess the potential to
interrelate in terms of their quantitative outcomes. This interplay can manifest as one criterion
exerting an impact on another. For instance, if one criterion positively influences another,
strategic measures can be devised to enhance the influenced criterion's performance.
Conversely, if a positive influence leads to a decline in the development of the influenced
criterion, strategies can be implemented to mitigate or curtail the influencing criterion's effect
on the influenced one. In accordance with this rationale, avenues emerge for devising
strategies, policies, and recommendations that facilitate the advancement of criteria through
the lens of interrelationships among criteria within any given concept. In this context, the
application of cubic functions becomes pertinent for gauging criterion weight coefficients.
This stems from the fact that cubic functions facilitate the determination of values wherein
criteria mutually influence one another, functioning as dependent and independent variables.
Thus, cubic functions offer a methodology to ascertain these interdependent values among

influencing and influenced criteria (Karagoz, 2017).

The literature underscores several advantageous aspects associated with cubic
functions. Firstly, cubic functions provide a versatile means to effectively model real-world
relationships between variables. This attribute proves particularly invaluable in nonlinear
modeling scenarios, where the flexibility inherent in cubic functions contributes to the
model's meaningfulness and constructiveness. Secondly, cubic functions demonstrate an
ability to mitigate overfitting more effectively than higher-degree polynomials. This quality
engenders greater consistency in the relationship between variables, enhancing the robustness
of the model. Thirdly, cubic functions inherently possess a maximum of three real roots,
invariably situated at the function's zero points. This inherent characteristic guarantees the
existence of at least one local minimum or maximum point within the function. Consequently,

this distinctive trait can be harnessed to optimize the cubic relationship between variables.
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The convergence of these benefits has rendered cubic functions a staple in diverse
applications spanning fields such as physics, chemistry, and economics. Instances of their
application include the modeling of object motion, molecular structures, and economic
growth. Collectively, cubic functions manifest as a potent tool for capturing intricate
relationships between variables. Their significance is particularly pronounced in nonlinear
modeling endeavors, where they imbue the model with enhanced meaningfulness,

consistency, and optimizability (Abramowitz and Stegun, 1965; Neumark, 1965).

The foundation of cubic functions is rooted in polynomial function. linear function,
given by f(x) = mx + b where (m # 0), is a polynomial function of degree 1. A quadratic
function, expressed as f(x) = ax? + bx + ¢ where (a # 0), falls within the scope of
polynomials with degree 2. Consequently, polynomial functions are constructed in the form of
f(xX) =ax™+a,_x" ... + a,x + ay, where n is a non-negative integer denoting the
degree of the polynomial. The value of n in the equation signifies the polynomial's degree.
Additionally, the coefficients a, ay, .....a, in the equation are real numbers, and(a # 0) is
explained as non-zero (Barnett, Ziegler and Byleen, 2015). Likewise, the equation f(x) =
ax3 + bx? + cx + d is classified as a cubic function since it is of the third degree (Thomas et

al. 2009: 30).

Upon reviewing the existing literature, it becomes evident that a substantial body of
research delves into the realm of cubic functions. In this context, Wanninkhof and McGillis
(1999) embarked on an exploration into the plausibility of a cubic correlation between gas
exchange and instantaneous (or short-term) wind speed. Their investigation encompassed both
laboratory and field findings, as well as an assessment of the potential ramifications of this
correlation on global air-sea fluxes. The authors articulated that the underpinning theory of
this correlation revolves around the retardation induced by surfactants in conditions of low
and moderate winds, coupled with bubble-facilitated transfer under high-wind conditions.
Notably, the authors observed that the cubic correlation they proposed, in contrast to
preceding associations, signifies a subdued gas transfer at low wind speeds and markedly
heightened gas transfer at elevated wind speeds. Their conclusion pointed towards the cubic
relationship as a more precise representation of the interplay between gas exchange and wind
speed, surpassing earlier formulations. This elucidated correlation holds the potential to

substantially enhance our comprehension of global air-sea fluxes.

Landquist et al. (2010) studied a survey of cubic function fields with at least fifth

character. In their research, they described a technique for defining the signature of any
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rational place in a cubic extension and pointed out the role of signature calculation in
calculating the class number of the function field. Therefore, in their research, the theory of
cubic function fields and the study of the zeros of the zeta functions of function fields were

evaluated from a different and original perspective.

Gilkar and Sahdad (2014) conducted a study that underscores the efficacy of
incorporating cubic functions to enhance the performance of the congestion control
mechanism within extensive and expansive networks. The authors additionally proffered an
algorithm integrated into the Linux operating system, designed to convert the congestion
window into a cubic function. The congestion control mechanism plays a pivotal role in
ensuring the network transmits data at a pace commensurate with its capacity. This is
achieved through dynamic adjustments in the size of the data window allowed for
transmission at any given juncture. Notably, this window size expands during non-congested
periods and contracts during periods of network congestion. It was determined by the authors
that the integration of cubic functions substantiates an enhancement in the responsiveness of
the congestion control mechanism to shifts in network conditions. This enhancement stems
from the superior ability of cubic functions to emulate network behavior with heightened
precision compared to alternative function types, such as linear functions. Moreover, the
algorithm formulated by the authors is straightforward to implement and possesses
applicability across diverse network scenarios. Its utilization holds the potential to markedly
enhance the efficiency of the congestion control mechanism, particularly within expansive

and extensive networks.

Rashid et al. (2018) embarked on the development of cubic functions, utilizing them to
construct cubic line graphs, cubic hypergraphs, and cubic soft graphs. The study elucidated
that by adopting an alternative perspective, cubic function graphs can be effectively classified.
Demonstrating the diverse utility of cubic functions, the authors showcased their efficacy in
generating an array of graphs tailored for visualizing various phenomena. The significance of
their work lies in its potential to democratize the understanding of cubic functions, rendering
them more accessible to a broader audience. Simultaneously, this endeavor serves to foster the

adoption of cubic functions across a multitude of disciplines and domains.

Li et al. (2019) extended the expansion elements of the Taylor series to the third order
through cubic functions. The study commenced by conducting an analysis of quality loss
coefficients, subsequently furnishing a cubic quality loss function. Furthermore, the study

introduced a methodology for calculating hidden quality costs employing the cubic loss
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function. The study's findings underscore the applicability of the cubic quality loss function in

quality cost calculation, while indicating that the quadratic loss function is unsuitable for this
purpose.

In a parallel study, Muhiuddin et al. (2020) delved into the exploration of cubic
functions to ascertain the equivalent condition for cubic inflection points. This endeavor was
achieved through elucidating concepts such as cubic path, cubic cycle, cubic diameter,
complete cubic graph, and strong cubic. As a result, the authors derived insights that allowed
them to utilize cubic graphs in traffic flow scenarios, thereby minimizing the time required to

reach destinations.

Tiruneh et al. (2020) presented a method for solving cubic equations that only requires
function evaluation. The authors argued that their method eliminates the need to manipulate
the original coefficients of the cubic polynomial, and as a result, the solution of cubic
equations is easier and more understandable. Additionally, the authors showed that their
method can be used to indirectly calculate the roots of a cubic polynomial by using the values
of the polynomial at a single point. Therefore, it is considered that the method could simplify
the reduction of cubic values, simplify the solution of cubic equations, and make cubic

functions more useful in practical application.

Zahedi et al. (2022) underscored the extensive utilization of cubic functions within the
realm of engineering. The authors expounded upon the congruence between cubic functions
and pertinent parameters, including real gas properties, the degree of chemical equilibrium,
and the actual beam deflection. Furthermore, the authors substantiated that cubic equations

can be effectively solved through the Cordano formula and the Newton-Raphson method.

3. METHOD

3.1. Data Set and Analysis of the Study

The data set of the study consisted of values of the Global Innovation Index (GII)
criteria for 19 countries in the G20 group for 2022. Furthermore, all GII criteria have been
determined in a benefit-oriented manner. In the study, the weight coefficients of the GII
criteria were calculated using the proposed method. For the convenience of the study, the GII

abbreviations are explained in Table 1.
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Table 1. GII Criteria and Abbrevations

Criteria Abbrevations
Institutions GII1
Human capital and research GII2
Infrastructure GII3
Market sophistication GII4
Business sophistication GIIS
Knowledge and technology outputs GlII6
Creative outputs GII7

3.2. Proposed Method: Cubic Effect Based Measurement (CEBM)

In the context of two interrelated variables, their quantitative interactions can be
elucidated through a range of functions. Within the SPSS literature, these functions
encompass linear, quadratic, compound, growth, logarithmic, cubic, S-shaped, exponential,
inverse, power, and logistic forms. Depending on the nature of these functions, the reciprocal
influences of the variables, whether as dependent or independent, are articulated through
equations facilitated by the SPSS program's Curve Estimation feature (Karagdz, 2020: 844-
845).

Cubic functions encompass a broader spectrum of data compared to numerous other
functions. Moreover, the inherent flexibility of cubic functions allows for the construction of
intricate models grounded in empirical data. This adaptability lends itself to the accurate
quantification of intervariable effects through cubic functions (Sullivan, 2014). Consequently,
within the framework of the proposed methodology, the interactions among criteria were

assessed utilizing cubic functions.

When crafting a cubic function between two variables via the SPSS program's Curve
Estimation, it becomes feasible to compute the alteration in the dependent variable arising
from shifts in the independent variable across the data set's maximum and minimum values.
This calculation can be achieved through a specific integral. Essentially, this implies that the
alterations in the independent variable provoke or impact the overall variation observed in the

dependent variable.

df (x)

The indefinite deriviate of the function f(x) is denoted by f'(x). Since f'(x) = >

f'(x)dx = df (x) can be written. This expression is written as | f'(x)dx = [ df (x) with the

integral sign [, which is the symbol of infinite and continuous sum. The equation
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[ f'(x)dx = f(x) can be obtained from this equation. Therefore, the function whose integral
is to be found is f'(x). Next, if [ f(x)dx = F(x) + C, [ f(x)dx = F(p) — F(r) is written.
Here, 't' represents the lower limit of the integral, and 'p' represents the upper limit (Kartal,
Karagoz and Kartal, 2014). Therefore, after determining the cubic relationships between the
criteria with the logarithm function (y = ax® + bx? + cx +d) the change in the x
independent variable between the 'p' and 't' limits can be measured or affected by the 'y'
variable with the definite integral. The steps of applying the proposed method are explained

below.
Step 1: Obtaining the Decision Matrix
i: 1, 2, 3...n, where n represents the number of decision alternatives
j: 1, 2, 3,...m, where m represents the number of criteria
D: Decision matrix
C: Criterion

d;;: The decision matrix is constructed according to Equation 1, where "i

;" represents the i-th

decision alternative on the j-th criterion.

G, G .. Cm
X11  X12 X 1m

D=yl = | %22 o Xom =
Xn1 Xn2 77 Xnm

Step 2: Normalization of Decision Matrix (d;;)

The normalization of the decision matrix is conducted through the utilization of the
subsequent equation. Benefit criteria undergo normalization using Equation 2, whereas cost

criteria are subjected to normalization employing Equation 3.

min
Xji — X
* J ]
dij - xmax _ ,min (2)
] ]
max
x! — X
« _ 7 tj
dij - xmax _ ,min (2)
] ]

Step 3: Generation of Cubic Functions
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Based on the number of criteria, m, cubic functions (y = ax3 + bx? + cx + d) are

m!

2!.(m-2)!

generated for the variables up to a quantity of {Z.C (m,2) =2. } using SPSS

assistance (CURVE ESTIMATION), considering the cubic relationship between them.
(DF(C) = Cp, f(C1) = Cap e f(C1) = Crp(4)
(2)f(C) = Co, f(C3) = Cap e f(C) = Cr(5)
(3)f(C3) = Cp, f(C3) = Cpy e f(C3) = C(6)

(m)f(cm) = Clr f(Cm) = CZ' """ f(Cm) = Cm—1(7)
Step 4: Calculation of Cubic Impact Value between Criteria

In this step, the extent to which an independent variable (one criterion) influences or
changes a dependent variable (another criterion) is determined by evaluating the independent
variable's effect within the range of its maximum and minimum values using definite integral
calculation. Here, k represents the cubic impact value of one criterion on the other. It is

important to ensure the absolute value of the impact values after the integral calculation.

Clmaks.

WFE) =G, f (F(C)dx = |ke,oc,|(8)
Clmin.
Clmaks.

@F(C) =G, f (F(C)dx = |ke,oe,|(9)
Clmin.
Clmaks.

BF(C) = C, f (F(C)dx = [k, | (10)
Clmin.

ml Cmmaks.
() = | @0 = kep D

The absolute value of the impact value of one criterion on another criterion is
emphasized above. This is because in this method, what matters is not the direction of the

influence between criteria, but rather the magnitude of the influence.

Step 5: Calculation of the Total Cubic Impact Values of Each Criterion (T,)
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In this step, the cubic impact values of a criterion on other criteria are summed to

measure the overall cubic impact value of a criterion on the other criteria.

m-—1
(1)f0r61|kcl_>(:2| + |kC1—>C3| + |kC1—>C4| ...... + |kC1—>Cm| - Z |kC1—>Cj+1 - Tcl(lz)
j=1
m-—1
(2)f0r62|kcz_>cll + |kC2—>C3| + |kC2—>C4| ...... + |kC2—>Cm| - Z |kC2—>Cj+1 - TCZ (13)
Jj=0,j#1
m-—1
(3)f0r63|kc3_>61| + |kC3—>C2| + |kC3—>C4| ...... + |kC3—>Cm| - |kC3—>Cj+1 - TCS (14)
Jj=0,j#2
m-—1
(m)fOTCm|ka_>C1| + |kcm—>c2| + |kcm—>c3| ------ + |kcm—>cm_1| = Z |kcm—>cj| =T, (15)
j=1

Step 6: Determination of Criterion Weight Values (w|  |j)

In this step, the total cubic impact value of each criterion on the other criteria is
divided by the sum of the total cubic impact values of all criteria. This allows for the

calculation of the weight coefficient of each criterion.

“_16)
w; = —————
g 271:1 TCj
The advantages of the CEBM method can be classified into two categories: quantity and

quality. These advantages are explained below in bullet points:
Quantity-Based Advantages of the CEBM Method:

Capturing Interactions Among Criteria with Higher Sensitivity: The method's ability to model
interactions among criteria using cubic functions enables a more precise capture. Thus, this
circumstance can assist in reflecting intercriteria interactions in complex decision-making
problems more effectively in the real world. Because with the cubic approach, more realistic

results can be obtained compared to the linear approach.

Determination of Criterion Significances: Through the method, criterion weights can be

quantitatively calculated, allowing for the measurement of the actual impacts of each criterion

166



Nicel Bilimler Dergisi / Cilt: 5, Say1: 2, Aralik 2023
Journal of Quantitative Sciences / Volume: 5, Issue: 2, December 2023

on the decision. In this regard, the method reflects the true value of criteria in the decision-

making process, thereby establishing a more robust foundation.

Data-Driven Approach: The method contributes to a decision-making process that is objective

and data-driven.

Suitability for Complex Decision-Making Problems: The method is specifically designed for
use in complex decision-making problem. In this context, cubic functions in the method better

capture intricate interactions among criteria and yield more realistic outcome.

Interaction Flexibility: The incorporation of cubic functions introduces a notable degree of
flexibility when delineating interactions among criteria. This newfound flexibility proves
invaluable in accurately modeling relationships among criteria, particularly within intricate
decision-making scenarios. Cubic functions afford the capacity to represent the influences of
criteria on one another in a nonlinear fashion. Consequently, this capability facilitates the
capture of more intricate and lifelike interactions among criteria, surpassing the confines of
mere linear associations. This facet gains utmost importance as it allows for the faithful

portrayal of complex decisions and the attainment of heightened outcomes.

Being sensitive to values within the range of [-1, 0] in the decision matrix and during the
normalization processes: Some criterion (ENTROPY and MEREC) weighting methods have
mathematical limitations that make it difficult to calculate criterion weights when decision
alternatives have values in the range of [-1, 0] in the decision and normalization matrices.
Consequently, under such circumstances, various transformations are applied to the values
within the decision matrix to facilitate the progression of methodological steps for
determining criterion weights (e.g., employing Z-scores). These transformations are
particularly crucial for methodologies such as ENTROPY and MEREC, as they involve the
utilization of logarithmic calculation techniques. However, within the framework of the
CEBM method, which relies on cubic functions for computations, no such transformations are
requisite for values within the [-1, 0] range within the decision and normalization matrices. As
a result, the steps of the CEBM method navigate without encountering undefined values, and
the original values within the decision matrix are taken into consideration. In the CRITIC
method, the weight coefficient of a criterion increases as the positive directional relationships
between the criteria decrease and the standard deviation values increase. In the method, the
relationships between the criteria are used to calculate the Pearson correlation coefficient, and

the relationships in question take on a linear structure. However, in the CEBM method, the
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relationships are not in a linear structure, so it is thought that its sensitivity to complex
problems is higher than the CRITIC method. In the SD, SVP and LOPCOW methods, the
interaction structure between the criteria is not taken into account. However, in the CEBM
method, the complex interaction structure between the criteria is taken into account, and the
weight value of the criterion with the highest impact value is the highest, as in the DEMATEL
method. Therefore, provided that the relationships between the criteria have a theoretical
structure, the CEBM method can provide policies for the improvement and development of

criteria by taking into account the interaction structure between the criteria.
Qualitature-Based Advantages of the CEBM Method:

Identification of Enhancement Opportunities: Criteria endowed with greater weightage wield
amplified influence over other criteria, rendering them apt targets for discerning avenues of
enhancement. Grasping the interrelationships among criteria and ascertaining their impact
values delineates the domains where endeavors for enhancement should be channeled. Put
differently, it engenders the capacity to delve into theoretical causal relationships between
criteria, thereby ascertaining the trajectory of their influence. This, in turn, streamlines the
process of identifying which criteria warrant prioritization or refinement contingent upon the

array of decision alternative

Priority Ascertainment: The process of weight determination facilitates the recognition of
priority hierarchies among the criteria. Criteria endowed with higher weights assume a more
significant role in comparison to their counterparts. This enables the identification of criteria

deserving enhanced attention during strategic planning and the decision-making process.

Performance Appraisal: The coefficients of weightage can be judiciously harnessed for
evaluating the performance of the criteria. Criteria endowed with elevated weights are
accorded the status of wielding more pronounced influence upon the operational performance
of the organization or system. This, in turn, facilitates more efficacious performance

assessment and focused endeavors for enhancement, honing in on the pivotal criteria.

Strategic Blueprinting: The coefficients of weightage conduce to the equitable allocation of
resources and exertions within the ambit of strategic blueprinting. By focusing on criteria
associated with higher weights, a more customized array of strategies and courses of action
can be revealed, aligning with the overarching strategic goals. This acts as a catalyst for the
development of strategic roadmaps aimed at enhancing the overall performance framework of

the entity or system.

168



Nicel Bilimler Dergisi / Cilt: 5, Say1: 2, Aralik 2023
Journal of Quantitative Sciences / Volume: 5, Issue: 2, December 2023

4. CASE STUDY
4.1. Computational Analyses

For the recommended method, a dataset comprising values of the Global Innovation
Index (GII) criteria for the 19 countries in the G20 group for the year 2022 has been provided,
along with an identity matrix ranging from 1. The corresponding decision matrix is presented

in Table 2.

Table 2. Decision matrix

Countries GlII1 GII2 GII3 GII4 GII5 GII6 GI17
Argentina 42.6 30.5 44 24.9 31.2 19 24.2
Australia 77.2 61.7 58.8 50.2 48.6 322 37.8
Brazil 46.7 36.2 43.9 37.2 37.9 24.8 24.5
Canada 80.4 57.7 57 65.1 523 39.3 38.7
China 64.8 53.1 57.5 56 55.9 56.8 49.3
France 77 573 59 58 53.2 45.5 52.5
Germany 76.5 64.1 57.7 53.7 52.7 54.8 523
India 60.1 383 40.7 50.3 30.9 33.8 243
Indonesia 55.1 224 43.4 41.7 22.1 19 18.6
Italy 59 46.8 574 41.9 393 45.2 41.3
Japan 75.8 52.7 61.3 59 58.1 52.6 38.9
Korea 70.5 66.4 60.3 48 58 54.7 55.1
Mexico 48.2 33.6 44.2 36.3 25.2 243 24.7
Russia 48.7 47 443 374 354 26.6 253
Saudi Arabia 60.6 45.6 48 47 31 21 19.5
South Africa 51.9 26.9 40.7 40.4 27.6 24.7 19.5
Tiirkiye 46.8 38.9 49.2 41.6 325 24.7 41.5
United Kingdom 74.5 61.5 62.9 67.6 51.7 55.7 559
USA 80.9 59.9 58.7 80.8 64.5 60.8 48.4
MIN 42.6 224 40.7 24.9 22.1 19 18.6
MAK 80.9 66.4 62.9 80.8 64.5 60.8 55.9

Continuing with the proposed method, the normalized values of the decision matrix

were computed using Equation 2. The measured normalized values are presented in Table 3.
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Table 3. Normalized values

Countries GII1 GII2 GII3 GII4 GII5 GII6 GII7
Direction Mak. Mak. Mak. Mak. Mak. Mak. Mak.
Argentina 0 0.184091 | 0.148649 0 0.214623 0 0.150134
Australia 0.903394 | 0.893182 | 0.815315 | 0.452594 0.625 0.315789 | 0.514745
Brazil 0.10705 0.313636 | 0.144144 | 0.220036 | 0.372642 | 0.138756 | 0.158177
Canada 0.986945 | 0.802273 | 0.734234 | 0.719141 | 0.712264 | 0.485646 | 0.538874
China 0.579634 | 0.697727 | 0.756757 | 0.556351 0.79717 0.904306 | 0.823056
France 0.898172 | 0.793182 | 0.824324 | 0.592129 | 0.733491 | 0.633971 | 0.908847
Germany 0.885117 | 0.947727 | 0.765766 | 0.515206 | 0.721698 | 0.856459 | 0.903485
India 0.456919 | 0.361364 0 0.454383 | 0.207547 | 0.354067 | 0.152815
Indonesia 0.326371 0 0.121622 | 0.300537 0 0 0
Italy 0.428198 | 0.554545 | 0.752252 | 0.304114 0.40566 0.626794 | 0.608579
Japan 0.866841 | 0.688636 | 0.927928 | 0.610018 | 0.849057 | 0.803828 | 0.544236
Korea 0.72846 1 0.882883 | 0.413238 | 0.846698 | 0.854067 | 0.978552
Mexico 0.146214 | 0.254545 | 0.157658 | 0.203936 | 0.073113 | 0.126794 | 0.163539
Russia 0.159269 | 0.559091 | 0.162162 | 0.223614 | 0.313679 | 0.181818 | 0.179625
Saudi Arabia 0.469974 | 0.527273 | 0.328829 | 0.395349 | 0.209906 | 0.047847 | 0.024129
South Africa 0.24282 0.102273 0 0.277281 | 0.129717 | 0.136364 | 0.024129
Tiirkiye 0.109661 0.375 0.382883 | 0.298748 | 0.245283 | 0.136364 | 0.613941
United Kingdom | 0.832898 | 0.888636 1 0.763864 | 0.698113 0.87799 1
USA 1 0.852273 | 0.810811 1 1 1 0.798928
MIN 0 0 0 0 0 0 0
MAK 1 1 1 1 1 1 1

In continuation of the CEBM method, cubic functions were formulated taking into

criteria are presented in Table 4.

account the relationships between the criteria as indicated by Equations 3, 4, 5, and 6.

Correspondingly, the cubic functions established based on the interrelations among the
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Table 4. Cubic functions generated based on the relationship between criteria

X y Cubic Equations X y Cubic Equations
GII2 | y=-0.822+2.46x+0x2-0.979x> GIIl | y=-0.065+0.600x+3.190x2-2.779x
GII3 | y=0.229+1.877x+0x2-0.738x> GII1 | y=0.146+0.285x+2.794x2-2.410x?
GII4 | y=0.424+ 0x-0.588x2+1.05x3 GII3 | y=0.110 -0.570x+5.338x2-4.091x>
GII—= 15 y=-1.357+3.687x+0x2-1.674x3 GIl4— "1s y=0.176-0.598x+4.146x2-2.790x>
GII6 | y=-0.407+1.512x+0x2-0.176x> GII6 | y=-0.0390+0.445x+2.418x>-1.877x>
GII7 | y=-1.490+3.982x +0x? -1.826x> GII7 | y=0.113-0.372x+4.295x2-3.263x>
GII1 | y=0.386-2.905x+8.951x%-5.800x GII1 | y=0.314-1.532x+5.643x%-3.543x
GII3 | y=0.136-1.380x+5.651x%-3.568x GII2 | y=0.043+1.339x+0.227x2-0.791x>
GII4 | y=0.342-2.071x+6.406x%-4.177x GII3 | y=0.101-0.375x+4.242x2-3.190x>
GIR— GII5—
GII5 | y=0.084-0.429x+3.153x%-2.009x> GII4 | y=0.275-0.239x+0.893x2-0.044x>
GII6 | y=0.054-0.527x+3.244x%-1.969x GII6 | y=0.046+0.190x+1.499x2-0.718x>
GII7 | y=-0.005+0.512x+0.402x2+0.052x GII7 | y=0.033+0.240x+2.627x2-2.126x>
GII | y=-0.343-2.069x+6.412x2-3.860x> GII1 | y=0.117+1.390x-0.414x2--0.279x>
GII2 | y=0.207+0.270x+1.461x2-1.075x> GII2 | y=0.143+1.916x-2.047x2+0.866x>
GII4 | y=0.326-1.049x+3.064x>-1.680x° GII3 | y=0.164-0.158x+3.630x2-2.874x>
GII3— GII6—
GII5 | y=0.195-0.656x+3.281x%-2.028x GII4 | y=0.130+1.841x-3.700x’+2.582x°
GII6 | y=0.250-1.941x+5.602x%-3.055x GII5 | y=0.089+1.370x-1.372x2+0.850x>
GII7 | y=0.069+0.259x+1.499x2-0.949x> GII7 | y=0.085+0.570x+1.417x2-1.214x
GIl y=0.304-1.020x+4.578x>-3.098x>
GII2 y=0.137+1.858x-2.465x2+1.418x>
GII3 y=0.0800-+0.450x+1.953x>-1.635x>
GIl7—
GIl4 y=0.326-1.144x+4.083x>-2.700x>
GII5 y=0.091+0.915x+0.288x2-0.517x>
GII6 y=0.071+ 0.202x+1.661x>-1.060x>

x=Independent Veariable. y=Dependent Variable

In the third phase of the approach, cubic influence factors among the criteria were
computed utilizing equations 6, 7, 8, and 9. The computation process for the impact values of
the GII1 criterion on the remaining criteria is elucidated in the following sections. The
determination of impact values for the remaining components of GII can be found in

Appendix A, provided for reference.

AGII)=GII2

f(x) =y =0,357—-1,528x + 5,574xx — 3,599xxx

—10797x? N 2787x
1000 250

f'x) = —1,528
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f1—10797x2 J2BTX L M7
.~ 1000 250 % T 1000

o f(GIT)=GII3
f(x) =y =0.289 — 2.163x + 7.606xx — 4.984xxx
, —1869x2% 3803x
f'®) = =55+ 7250
1-1869x% 3803«
_L 125 ' 250

- 2,163

—2,163dx = 0,459

o f(GII1)=GII4

f(x) =y =0,0227 + 1,952x — 3,631xx + 2,472xxx
927x% 3631x

f'e) =3z =og + 1,952
f1927x2 3631x | | oo, 9432466197
o 125 500 7240 = 50000000000

o f(GIT)=GII5

f(x) =y =0,3251—-1,7902x + 5,489xx — 3,238xxx
o) = —4857x? N 5489x

F')=—55 500

fl —4857x2 N 5489x
. 500 500

—1,7902

—1,7902dx = 0,461

o f(GII1)=GII6

f(x) =y =0,095— 0,656x + 4,499xx — 3,288xxx
) = —1233x? N 4499x

[ =—8 500

~f1—1233x24_4499x
s 125 500

— 0,656

—0,656dx = 0,555
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o f(GII1)=GII7
f(x) = 0,386 — 2,905x + 8,951xx — 5,800xxx

) _—87x2 8951x
flx)=—5 500

— 2,905

1_87x% 8951x
f — 2,905dx = 0,246
0

5 T7500

In the fourth step of the process, the cumulative cubic impact values for each criterion
were computed using formulas 10, 11, 12, and 13. These calculated values have been displayed

in Table 5.

Table 5. Sum of cubic impact values of GII components on each other

Independent | Dependent Effect Absolute | Independent | Dependent Effect Absolute
Component | Components Value Component | Components Value
GII2 0.447 0.447 GII1 0.999 0.999
GII3 0.459 0.459 GII2 0.669 0.669
Gll4 0.793 0.793 GII3 0.667 0.667
GIIl— GII5 0.461 0.461 GIll4— GII5 0.758 0.758
GlI6 0.555 0.555 GII6 0.986 0.986
GI17 0.246 0.246 G117 0.66 0.66
Total 2.961 2.961 Total 4.739 4.739
GII1 0.246 0.246 GII1 0.568 0.568
GII3 0.703 0.703 GII2 0.775 0.775
Gli4 0.158 0.158 GII3 0.677 0.677
GIIR2— GII5 0.715 0.715 GII5S— Gll4 0.61 0.61
GlI6 0.748 0.748 GlI6 0.971 0.971
GI17 0.966 0.966 G117 0.741 0.741
Total 3.536 3.536 Total 4.342 4.342
GII1 0.483 0.483 GIIl 0.697 0.697
GII2 0.656 0.656 GII2 0.735 0.735
Gll4 0.335 0.335 GII3 0.598 0.598
GII3— GII5 0.597 0.597 GIlI6— Gll4 0.723 0.723
GlI6 0.606 0.606 GII5 0.848 0.848
GII7 0.809 0.809 GI17 0.773 0.773
Total 3.486 3.486 Total 4374 4374
Independent Component | Dependent Components Effect Value Absolute Value
GIIl 0.460 0.46
GII2 0.811 0.811
GII3 0.768 0.768
GII7— Gli4 0.239 0.239
GII5 0.686 0.686
GlI6 0.803 0.803
Total 3.767 3.767
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Moreover, in Equation 14, the weight coefficients, which represent the levels of
significance for each criterion, are computed. These coefficients quantify the relative
importance of the criteria within the context of the analysis. The resulting values have been

documented in Table 6.

Table 6. Weighting coefficients of the components

Gll Components Total Effects w Ranking
Gl 2.961 0.1088403 7
Gli2 3.536 0.1299761 5
GlI3 3.486 0.1281382 6
Gll4 4.739 0.1741959 1
GllI5 4.342 0.159603 3
Gll6 4374 0.1607793 2
GlI7 3.767 0.1384672 4
Toplam 27205 e -

Upon thorough examination of Table 4, the significance assigned to the diverse
constituents of the GII (Cubic Impact) has been arranged as follows: GII4 holds the highest
weight coefficient, succeeded by GII4, GIl6, GIIS, GII7, GII2, GII3, and finally GII1. This
sequence elucidates the varying levels of importance attributed to each constituent within the

GII framework.

4.2. Computational Analyses

Within the scope of this research, an examination of the CEBM method was conducted
to assess its sensitivity in terms of methodology. Sensitivity analysis, in the context of MCDA,
involves a process where various criteria weighting methods are applied to the same dataset,
facilitating a comparison of the resulting values and rankings. To ensure the sensitivity of the
weight coefficient calculation method, the weight ranking of the criteria identified with the
method to be subjected to sensitivity analysis is expected to be different from the weight

coefficient rankings identified with other methods (Gigovic, 2016).

In accordance with this approach, for the purpose of sensitivity analysis, the weighting
coefficients associated with the components of the GII were calculated and organized using
well-established objective weighting techniques prevalent in scholarly literature. Noteworthy

examples of these techniques encompass ENTROPY, CRITIC, SD (Standard Deviation), SVP
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(Statistical Variance Procedure), MEREC, and LOPCOW. The corresponding numerical

outcomes have been meticulously documented in Table 7.

Table 7. Values for other methods of calculating objective weighting coefficients

GII ENTROPY CRITIC SD

Value Ranking Value Ranking Value Ranking
GII1 0.0932089 6 0.197686 1 0.1082728 6
GII2 0.1785586 4 0.1294088 5 0.14443 4
GII3 0.0492509 7 0.1237116 6 0.0794983 7
GII4 0.1471809 5 0.1578584 3 0.1362273 5
GIIS 0.2030259 3 0.0782892 7 0.1556881 3
GlI6 0.3287748 1 0.1481991 4 0.1941804 1
GII7 0.2872703 2 0.1648469 2 0.1817031 2
GII Svp LOPCOW MEREC

Value Ranking Value Ranking Value Ranking
GII1 0.1771006 4 0.1430929 4 0.0887702 6
GII2 0.184283 2 0.1609176 1 0.148061 4
GII3 0.0639185 7 0.1360646 5 0.0488366 7
GII4 0.1760155 5 0.1608688 2 0.176495 3
GIIS 0.1745698 6 0.1438358 3 0.198777 2
GII6 0.2241127 1 0.1249748 7 0.2161803 1
GII7 0.1804056 3 0.1302454 6 0.1228798 5

When Tables 6 and 7 are compared simultaneously, it becomes evident that the

prioritization of criteria weighting coefficients for the Global Innovation Index (GII) varies

when determined through the CEBM in comparison to other methods. This shows that the

CEBM method is a sensitive technique.

4.3. Computational Analyses

In the comparative analysis, the relationships and positions of the proposed method with

other objective weight coefficient calculation methods are evaluated. In this regard, it is
expected that the proposed method is credible and reliable, and does not differ much from other
methods, and has a positive and significant relationship with different weight coefficient
methods (Keshavarz-Ghorabaee et al., 2021). Based on the data shown in Table 7, the positions

of the methods are shown in Figures 1 and 2.
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ENTROPY SD LOPCOW CEBM

Figure 1. Positions of the methods-1
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Figure 2. Positions of the methods-2

According to Figure 1, the proportional similarity of the point locations of the CEBM
method to the MEREC method is greater than that of the other methods. In addition, in Figure
2, the differences between the CEBM method and MEREC points are at a lower level than the
differences between the CEBM method and the points of other methods. In light of all this data,
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it can be evaluated that the relationships between the CEBM method and the MEREC method
are positive, significant, and high. In this regard, the correlation values of the CEBM method

with other methods are shown in Table 8.

Table 8. Correlation values of the CEBM method with other Methods

Methods ENTROPY CRITIC SD SVP LOPCOW MEREC

CEBM 0.470 -0.392 0.519* 0.343 0.091 0.791**

p**<.01. p*<.05

According to Table 8, the CEBM method has a significant, positive, moderate
relationship with the SD method, and a significant, positive, and high relationship with the
MEREC method. In this regard, the fact that the CEBM method has significant positive
relationships with the SD and MEREC methods suggests that the method is credible and

reliable.

4.4. Simulation Analysis

To ensure the simulation analysis, different scenarios are created by assigning different
quantities to decision matrices. For the stability of results determined by proposed method, the
proposed method is expected to differ from other methods as the number of scenarios increases.
In the second case, the average of the variance values of the proposed method according to the
scenarios must be greater than one or several of the other objective weighting methods. This
shows that the proposed method is relatively effective in distinguishing the weights of the
criteria. Finally, in the fourth case, the homogeneity of the variances of the criterion weights
according to the methods within the scenarios must be formed (Keshavarz-Ghorabaee vd,

2021).

In the simulation analysis, the correlation values of the CEBM method with other

methods were calculated according to the 10 scenarios created first and are shown in Table 9.
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Table 9. Correlation values of the CEBM method with other methods within scenarios.

Group Scenarios | ENTROPY | CRITIC SD Svp LOPCOW | MEREC
1. Scenario 0.493 -0.410 0.524* 0.312 0.053 0.810%**
First group 2. Scenario 0.475 -0.470 0.600* 0.345 0.065 0.800**
3. Scenario 0.512* -0.455 0.640* 0.325 0.078 0.843**
Scenarios ENTROPY | CRITIC SD Svp LOPCOW | MEREC
4. Scenario 0.535 -0.443 0.480* 0.382 0.065 0.754%*
5. Scenario 0.464 -0.385 0.300 0.355 0.064 0.766**
6. Scenario 0.445 -0.475 0.250 0.205 0.052 0.615*
Second 7. Scenario 0.523* -0.510%* 0.240 0.295 0.025 0.623*
group 8. Scenario 0.495 -0.630* 0.215 0.343 0.035 0.700*
9. Scenario 0.277 -0.420 0.270 0.232 0.052 0.599*
10. Scenario 0.435 -0.600* 0.420 0.315 0.065 0.625*
Ortalama 0.465 -0.481 0.499 0.326 0.118 0.797**
p**<.01. p**<.05

According to Table 9, it is evaluated that the criterion weights differ from each other

according to the methods as the number of scenarios increases. In addition, the positive and

significant relationships of the CEBM method with the MEREC method in all scenarios are

noteworthy. The data shown in Table 7 were divided into two groups, and the comparison of the

correlation values between the created groups is shown in Figure 3.
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Figure 3. Correlation status of the CEBM method with other methods within scenarios
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According to Figure 3, the correlation status of the CEBM method with other methods
generally differs as the number of scenarios increases. This difference is evaluated as having a
decreasing effect on the correlation value for the ENTROPY method in the 9th scenario, an
increasing effect on the negative correlation value for the CRITIC method in the 7th, 8th, 9th,
and 10th scenarios, a decreasing effect on the correlation value for the SD and MEREC
methods after the 3rd scenario, a decreasing effect on the correlation value for the SVP method
in the 9th and 10th scenarios, and a general decreasing effect on the correlation value for the
LOPCOW method in all scenarios. The discriminant image of the correlation values of the

CEBM method with other methods in terms of scenarios is presented in Figure 5.

Dimension 2
Dimension 2

2 4 0 1 2 2 4 0 1 2
Dimension Dimension 1

FIRST GROUP SECOND GROUP

Figure 4. Discriminant image of the correlation status of the CEBM method with other methods
in terms of scenarios

According to Figure 4, in the first group, methods are generally close to each other in
the first three scenarios. However, it has been determined that the methods are generally distant
from each other in the next 7 scenarios. Accordingly, it has been determined that the
characteristic qualities of the methods become more pronounced as the scenarios increase and
that the methods therefore become more distant from each other. In the simulation analysis, the
variance values of the methods were calculated within the scenarios, and the calculated values

are presented in Table 10.
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Table 10. Variance values of methods by scenarios

Scenario CEBM ENTROPY | CRITIC SD Svp LOPCOW MEREC
1. Scenario | 0.0035238 0.002962 0.00141 | 0.002594 | 0.002431 | 0.0021961 0.0036377
2. Scenario | 0.0031365 0.0038422 | 0.003349 | 0.002448 | 0.002137 | 0.0026993 0.0025125
3. Scenario 0.002196 0.0031448 | 0.002247 | 0.003869 | 0.002534 | 0.002508 0.0022544
4. Scenario 0.005001 0.0021184 | 0.001582 | 0.000946 | 0.002893 | 0.0032147 0.0049132
5. Scenario 0.001898 0.0031889 | 0.001468 | 0.001628 | 0.002533 | 0.0028489 0.0033628
6. Scenario 0.002261 0.0031394 | 0.002833 | 0.0012 | 0.002659 | 0.0022608 0.0022812
7. Scenario 0.003517 0.0026188 | 0.003401 | 0.00391 | 0.002161 | 0.0032112 0.0032689
8. Scenario | 0.0029902 0.0029758 | 0.001869 | 0.002692 | 0.002775 | 0.0038766 0.0027456
9. Scenario | 0.0032298 0.0038046 | 0.002468 | 0.00141 | 0.000252 | 0.0033576 0.0027567
10. Scenario | 0.0022397 0.0022693 0.001 0.001262 | 0.002186 | 0.0037955 0.0029275

Mean 0.0029993 | 0.00300642 | 0.002163 | 0.002196 | 0.002256 | 0.00299687 | 0.00306605

According to Table 10, the average variance value of the CEBM method is lower than
the average variance values of the MEREC and ENTROPY methods, but higher than the
average variance values of the CRITIC, SD, and SVP methods. Again, according to Table 8, the
average variance values of the CEBM and LOPCOW methods are found to be close to each
other. Therefore, it can be evaluated that the CEBM method is relatively effective in
distinguishing the weights of criteria, as the average variance value of the CEBM method is

higher than the average variance values of the CRITIC, SD, and SVP methods.

In the continuation of the simulation analysis, the homogeneity of the variances of the
criterion weights of the CEBM method was analyzed by ADM (ANOM for variances with
Levene) analysis within the scenarios. This analysis is an analysis that helps us to obtain a
graphical representation to verify the homogeneity of the wvariances. The graphical
representation has three variables: the general average ADM is the center line, the upper
decision limits (UDL) and the lower decision limits (LDL). If the standard deviation of a group
(cluster) falls outside the decision limits, that standard deviation is significantly different from
the general average ADM and there is heterogeneity in the variances. In other words, if the
standard deviations of all clusters are between LDL and UDL, the homogeneity of the variances
is verified (Keshavarz-Ghorabaee et al., 2021). The visual for the ADM analysis is shown in
Figure 5.
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Figure 5. ADM Visual

As shown in Figure 5, the ADM values generated for each scenario fall below the UDL
values and above the LDL values. Therefore, the variances of the weights identified for each
scenario are homogeneous. This condition was also measured by the Levene Test. The basic

values for the Levene Test are presented in Table 11.

Table 11. Levene Statistic

Levene Statistic dfl df2 Sig.

0.522 2 10 0.174

p**<.05
According to Table 11, the p-value (p=0.174) is greater than 0.05, so the variances of the
criterion weights across scenarios are homogeneous. In general, the simulation analysis results

indicate that the CEBM method is robust and stability.

S. RESULTS AND DISCUSSION

Multi-criteria decision making is a prevalent approach utilized to address intricate
decision conundrums. This method strives to select from various options by taking into account
a set of different standards. Nevertheless, the significance of each criterion might diverge,
underscoring the need to assign weights to these criteria. Assigning these weights serves to

cultivate an impartial and unbiased process in the decision-making framework, thereby
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elucidating the interconnections and priorities among the distinct criteria. This, in turn,
facilitates the attainment of more coherent and dependable outcomes throughout the decision-
making procedure. Consequently, numerous scholars have devised novel techniques to compute
the weight factors for these criteria. Each approach has augmented the spectrum of knowledge

in Multiple Criteria Decision Making (MCDM) by employing diverse methodologies.

Multi-criteria decision making is a prevalent approach utilized to address intricate
decision conundrums. This method strives to select from various options by taking into account
a set of different standards. Nevertheless, the significance of each criterion might diverge,
underscoring the need to assign weights to these criteria. Assigning these weights serves to
cultivate an impartial and unbiased process in the decision-making framework, thereby
elucidating the interconnections and priorities among the distinct criteria. This, in turn,
facilitates the attainment of more coherent and dependable outcomes throughout the decision-
making procedure. Consequently, numerous scholars have devised novel techniques to compute
the weight factors for these criteria. Each approach has augmented the spectrum of knowledge

in MCDM by employing diverse methodologies.

Furthermore, as novel methodologies for determining the weight coefficients of criteria
persistently surface, there is an escalating trend toward specialization in the computation of
these weights. As a result, in this research endeavor, a fresh methodology grounded in cubic
functions (CEBM) is introduced for the computation of weight coefficients attributed to the
various criteria.The The study's dataset encompassed data from the Global Innovation Index
(GII) for the year 2023, focusing on 19 countries belonging to the G20 coalition. Initially,

CEBM was employed to compute the weight coefficients of the GII's constituent elements.

In the study, the weight values of the GII criteria were calculated using other objective
criterion weighting methods (ENTROPY, CRITIC, SVP, SD, LOPCOW and MEREC) to
measure the sensitivity of the proposed method, and the GII criterion weight ranking identified
within the CEBM method was compared with the other objective criterion weighting methods.
According to the findings, the weight ranking of the GII criteria determined by the CEBM
method completely differed from the weight coefficient rankings of the GII criteria determined
by the other objective criterion weighting methods. Based on this result, it was concluded that

the proposed method is sensitive.

In the study, the second approach was the comparative analysis of the CEBM method.
Accordingly, the similarity of the CEBM method with other objective weight methods was
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analyzed. According to the results, the CEBM method was found to have a positive, significant
and high relationship with the MEREC method, and a positive, significant and medium-level
relationship with the SD method. In general, it was observed that the CEBM method does not
have a very high similarity with other criterion weighting methods in general. Based on these

results, it was concluded that the CEBM method is credible and reliable.

In the research, within the scope of a simulation analysis, ten different GII decision
matrices were created using the CEBM method and other objective weighting coefficient
methods. These matrices were categorized into two groups: the first group comprising 3
scenarios and the second group comprising 7 scenarios. In this context, the correlation values
between the CEBM method in the first and second groups and other objective weighting
methods were compared. The findings indicated that as the number of scenarios increased, the
correlation values between the CEBM method and other methods generally decreased,
suggesting that the distinctive characteristics of the CEBM method became more pronounced.
Secondly, in the simulation analysis, the variance values of the methods were calculated within
the scenarios. According to the results, the CEBM method's average variance value was higher
than the average variance values of the CRITIC, SD, and SVP methods. This implies that the
CEBM method is relatively effective in distinguishing the weights of criteria. Continuing with
the simulation analysis, the homogeneity of variance for the CEBM method's criterion weights
within the scenarios was assessed using the ADM analysis. The ADM values created according
to the scenarios were observed to be below UDL values and above LDL values. Furthermore,
the homogeneity of variances for the CEBM method was measured using the Levene test. Since
the significance value in this test was greater than 0.05, it was concluded that the variances of
the methods were homogeneous. Therefore, based on the simulation analysis data, it was

determined that the CEBM method is stable and robust.

Just as the CEBM method has its advantages, it also has some disadvantages and
limitations. One notable drawback or limitation is its intricate computational process for
determining criteria weight coefficients, especially when the number of criteria expand The
complexity arises from the multitude of interaction values between criteria. Another drawback
or limitation is its dependency on statistical software tools like SPSS to identify cubic
relationships between criteria. Should one lack access to SPSS, the weight coefficient
calculations according to this method become more convoluted and time-consuming. Moreover,

a third drawback or limitation arises when a clear cause-and-effect relationship is absent among
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the criteria. This situation can restrict opportunities for improving the criteria using this

approach.

Considering all these findings, it can be concluded that the CEBM method exhibits a high level
of sensitivity, credible, reliable, and stability. In summary, this study aims to demonstrate the
feasibility of quantifying criterion weights using the CEBM within the realm of MCDM
literature. The proposed approach is expected to provide a valuable tool for objectively
assessing the effectiveness of available decision options. The outcomes of this research hold
significant implications for scholars and decision-makers operating within this relevant field.
Therefore, it is anticipated that these research findings will stimulate an increased emphasis on
the integration of cubic functions in mathematical modeling processes across academic circles,
corporate environments, and other institutional settings. Furthermore, it can be inferred that the
CEBM method stands out as an effective resource for decision-makers involved in complex
tasks of choice and judgment, particularly related to the performance evaluation of various

decision alternatives.
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F(GII4)
F(GII4)=GII1
f(x) =y = —0,065 + 0,600x + 3,190x2 — 2,779x3

—8337x% 319x

f'&) =—g00 + 50 TO6

1-8337x% 319x
f + 0,6dx =1
0

1000 ' 50
F(GII4)=GII2
f(x) =y = 0,146 + 0,285x + 2,794x2 — 2,410x>

o) = —723x2 N 1397x T 0285
160 = =50 250

+ 0,285dx = 0,669

fl —723x2 N 1397x
, 100 ' 250

F(GII4)=GII3
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(x) =y =10,110 — 0,570x + 5,338x% — 4,091x3
y

—12273x% 2669x

F'®=—500  +t 250 ~ %%’
fl 12273 2669x
.~ 1000 250 T

F(GII4)=GII5
f(x) =y =0,176 — 0,598x + 4,146x2 — 2,790x3

o) = —837x2 N 2073x 0598
160 = =50 250

fl —837x2 N 2073x
, 100 ' 250

—0,598dx = 0,758
F(GII4)=GII6
f(x) =y =—0,0390 + 0,445x + 2,418x% — 1,877x3

—5631x? N 1209x
1000 250

f'x) = + 0,445

1-5631x% 1209x
f + 0,445dx = 0,986
0

1000 ' 250
F(GI14)=GI17
f(x) =y =0,113 — 0,372x + 4,295x2 — 3,263x3

o) = —9789x2 N 859x 0372
T 100

—0,372dx = 0,660

fl —9789x2 N 859x
0 1000 100

F(GII5)

f(x) =y =0,314 —1,532x + 5,643x% — 3,543x3

—10629x? N 5643x
1000 500

f'x) = — 1,532

—1,532dx = 0,568

fl ~10629x> | 5643
s 1000 500

F(GII5)=GII2
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x) =y =0,043 +1,339x + 0,227x* — 0,791x
(x) =y = 0,043 + 1,339x + 0,227x% — 0,791x3

) = —2373x2 N 227x 1339
T 500

1000 + 00 +1,339dx = 0,775

fl —2373x2%2 227x
0

F(GII5)=GII3

f(x) =y =0,101-0,375x + 4,242x% — 3,190x3

o) = —957x2 N 2121x 0375
160 = =50 250

fl ST 221X sy = 0,677
, 100 ' 250 T
F(GII5)=Gl14

(x) = y = 0,275 — 0,239x + 0,893x — 0,044x3

—33x% 893«x

f'&) = =57+ 300

- 0,239

1_33x%2 893«
f —0,239dx = 0,610
0

250 ' 500
F(GII5)=GII6
(x) = y = 0,046 + 0,190x + 1,499x2 — 0,718

—1077x? N 1499x
500 500

f'ix) = +0,19

00 + 00 + 0,19dx = 0,971

fl —~1077x% 1499x
0

F(GII5)=GII7

(x) = y = 0,033 + 0,240x + 2,627x2 — 2,126x3

—3189x? N 2627x
500 500

f'ix) = + 0,24

1-3189x2 2627x
f + 0,24dx = 0,741
0

500 500

F(GII6)
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F(GII6)=GII1
(x) =y =0,117 + 1,390x — 0,414x2 — 0,279x3

— —837x% 207x
1000 250

f'ix) = +1,39

1000 250 + 1,39dx = 0,697

fl —837x2% 207x

0

F(GII6)=GII2

(x)=y=0,143 +1,916x — 2,047x% + 0,866x3

1299x2 2047x
500 500

f'(x) = + 1,916

11299x% 2047x
f — +1,916dx = 0,735
0

500 500
F(GII6)=GII3
(x) =y = 0,164 — 0,158x + 3,630x2 — 2,874x3

—4311x? N 363x
500 50

f'(x) = - 0,158

00 + 0 — 0,158dx = 0,598

fl —4311x?  363x
0

F(GI16)=Gl14

(x) =y = 0,130 + 1,841x — 3,700x2 + 2,582x3

% )_3873x2 37x+1841
1) = =550 5 T

13873x%2 37x
f - + 1,841dx = 0,723
0

500 5
F(GII6)=GII5
f(x) =y = 0,089 + 1,370x — 1,372x2 + 0,850x>

51x% 343x
20 125

f'(x) = + 1,37

151x2 343«x
f + 1,37dx = 0,848
0

20 125
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F(GII6)=GI17
f(x) =y =0,085+0,570x + 1,417x?% — 1,214x3

—1821x? N 1417x
500 500

f'(x) = +0,57

fl —1821x% 1417x
0

200 + 00 +0,57dx = 0,773

F(GII7)
F(GII7)=GlI1

(x) =y =0,304+ —1,020x + 4,578x2 — 3,098x3
y

—4647x? N 2289x 102
500 250 '

f'(x) =

1—4647x% 2289x
f —1,02dx = 0,460
0

500 250
F(GII7)=GII2
F(x) =y = 0,137 + 1,858x — 2,465x% + 1,418x>

2127x%* 493x
500 100

F(x) = + 1,858

200 100 + 1,858dx = 0,811

fl 2127x%  493x
0

F(GI17)=GII3

f(x) =y = 0,0800 + 0,450x + 1,953x2 — 1,635x3

oy 9817 1953x
f'&) = =50 500

1-981x2 1953x
f + 0,45dx = 0,768
0

200 ' 500
F(GII7)=Gl14
f(x) =y =0326 — 1,144x + 4,083x2 — 2,700x3

—81x? 4 4083x
10 500

f'x) = — 1,144
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1-81x2 4083x
f —1,144dx = 0,239
0

10 " 500
F(GII7)=GII5
f(x) =y = 0,091+ 0,915x + 0,288x2 — 0,517x>

) B —1551x2 N 72x
f'&) =—o00 * 125

+ 0,915

1000 + 175 + 0,915dx = 0,686

fl —1551x2 72x
0

F(GII7)=GII6

f(x) =y =0,071+0,202x + 1,661x% — 1,060x3

0 = ~159x% 1661x
f'6) =—%5 500

+ 0,202dx = 0,803

fl ~159x% 1661
s 50 500
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