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1Department of Business Administration, Dicle University, Diyarbakır, Turkey, ORCID: 0000-0002-3884-3957
2Department of Mathematics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey, ORCID:0000-0002-4822-9571
3Department of Mathematics, Bursa Uludag University Bursa, Turkey, ORCID: 0000-0002-7950-8450
* Corresponding Author E-mail: sahsenealtinkaya@gmail.com

Abstract: In this study, we construct a new subclass of m-fold symmetric bi-univalent functions using by Hadamard product and
generalized Salagean differential operator in the open unit disk U = {z ∈ C : |z| < 1}. We establish upper bounds for the coeffi-
cients |am+1| and |a2m+1| belonging to this new class. The results presented here generalize some of the earlier studies.
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1 Introduction

Let A be the family of analytic functions, normalized by the conditions f(0) = f ′(0)− 1 = 0 and having the following form

f(z) = z + a2z
2 + a3z

3 + · · · (1)

in the open unit disk D. We also denote by S the subclass of functions in A which are univalent in U (see for details [4]).
According to the Koebe-One Quarter Theorem [4], it provides that the image of U under every univalent function f ∈ A contains

a disk of radius 1/4. Thus every univalent function f ∈ A has an inverse f−1 satisfying f−1 (f (z)) = z and f
(
f−1 (w)

)
= w(

|w| < r0 (f) , r0 (f) ≥ 1
4

)
, where

F (w) = f−1 (w) = w − a2w2 +
(

2a22 − a3
)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U . Let Σ denote the class of bi-univalent functions in U
given by (1). The detailed information about the class of Σ was given in the references [2], [6], [7] and [10].

The Hadamard product or convolution of two functions f(z) = z +
∞∑
k=2

akz
k ∈ A and g(z) = z +

∞∑
k=2

bkz
k ∈ A, denoted by f ∗ g, is defined

by

(f ∗ g)(z) = z +

∞∑
k=2

akbkz
k (z ∈ U).

For δ ≥ 1 and f ∈ A, Al-Obodi [1] introduced the following differential operator:

D0
δf(z) = f(z),

D1
δf(z) = (1− δ)f(z) + δzf ′(z) = Dδf(z),

...

Dnδ f(z) = (1− δ)Dn−1δ f(z) + δz
(
Dn−1δ f(z)

)′
= D (Dnδ f(z)) (z ∈ U, n ∈ N0 = N ∪ {0}) .

(3)

If f is given by (1), we see that

Dnδ f(z) = z +

∞∑
k=2

[1 + (k − 1)δ]n akz
k

with Dnδ f(0) = 0. It is worthy mentioning that when δ = 1 in (3), we have the differential operator of Salagean [9].
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Let m be a positive integer. A domain E is said to be m-fold symmetric if a rotation of E about the origin through an angle 2π/m carries
E on itself. It follows that, a function f analytic in U is said to be m-fold symmetric if

f(e2πi/mz) = e2πi/mf(z).

A function is said to be m-fold symmetric if it has the following normalized form:

f(z) = z +

∞∑
k=1

amk+1z
mk+1 (z ∈ U, m ∈ N). (4)

Let Sm the class of m-fold symmetric univalent functions in U , which are normalized by the series expansion (4). In fact, the functions
in the class S are one-fold symmetric. Analogous to the concept of m-fold symmetric univalent functions, we here introduced the concept of
m-fold symmetric bi-univalent functions. Each function f ∈ Σ generates an m-fold symmetric bi-univalent function for each integer m ∈ N.
The normalized form of f is given as in (4) and the series expansion for f−1, which has been recently proven by Srivastava et al. [9], is given
as follows:

F (w) = f−1 (w) = w − am+1w
m+1 +

[(
m+ 1)a2m+1 − a2m+1

)]
w2m+1

−
[
1
2 (m+ 1)(3m+ 2)a3m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · .

We denote by Σm the class of m-fold symmetric bi-univalent functions in U . For m = 1, the formula (4) coincides with the formula (2) of the
class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

(
zm

1− zm

) 1
m

,
[
− log(1− zm)

] 1
m ,

[
1

2
log

(
1 + zm

1− zm

) 1
m

]
.

The coefficient problem for m-fold symmetric analytic bi-univalent functions is one of the favourite subjects of Geometric Function Theory in
these days, (see, e.g., [3], [5], [11], [12]).

Here, the aim of this study is to determine upper coefficients bounds |am+1| and |a2m+1| belonging to the newly defined subclass.
Firstly, in order to derive our main results, we require the following lemma.

Lemma 1. (See [8]) If a function p ∈ P is given by

p(z) = 1 + c1z + c2z
2 + · · · (z ∈ U) ,

then |ci| for each i ∈ N, where the Caratheodory class P is the family of all functions p analytic in U for which <(p(z)) > 0 and p(0) = 1.

2 Coefficient bounds for the functions class Σt,n,δ
m (τ, α, λ)

Definition 1. A function f given by (4) is said to be in the class

Σt,n,δm (τ, α, λ) (τ ∈ C\{0}, 0 < α ≤ 1, λ > 0, t, n ∈ N0, t > n, δ ≥ 1, z, w ∈ U)

if the following conditions are satisfied:

f ∈ Σm,

∣∣∣∣∣arg

(
1 +

1

τ

[
(1− α)

Dnδ (f ∗ g)(z)

Dtδ(f ∗ h)(z)
+ α

(Dnδ (f ∗ g)(z))′(
Dtδ(f ∗ h)(z)

)′ − 1

])∣∣∣∣∣ < απ

2
(5)

and ∣∣∣∣∣arg

(
1 +

1

τ

[
(1− α)

Dnδ (F ∗ g)(w)

Dtδ(F ∗ h)(w)
+ α

(Dnδ (F ∗ g)(w))′(
Dtδ(F ∗ h)(w)

)′ − 1

])∣∣∣∣∣ < απ

2
, (6)

where g(z) = z +
∞∑
k=1

gmk+1z
mk+1, h(z) = z +

∞∑
k=1

hmk+1z
mk+1 and the function F is extension of f−1 to U .

We start by finding the estimates on the coefficients |am+1| and |a2m+1| for the functions in the Σt,n,δm (τ, α, λ).
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Theorem 1. Let the function f given by (4) be in the class Σt,n,δm (τ, α, λ). Then

|am+1| ≤
2 |τ |λ√
|A|

and

|a2m+1| ≤
2 |τ |λ

(1 + 2mα) |(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1|
+

2(m+ 1)τ2λ2

|A| ,

where

A = τλ(1 +m)(1 + 2mα)
[
(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1

]
−2τλ(1 + 2mα+m2α)

[
(1 +mδ)t+nhm+1gm+1 − (1 +mδ)2th2m+1

]
− (λ− 1)(1 +mα)2

[
(1 +mδ)ngm+1 − (1 +mδ)thm+1

]2
.

Proof: Suppose that Σt,n,δm (τ, α, λ). From the conditions (5) and (6), we can write

1 +
1

τ

[
(1− α)

Dnδ (f ∗ g)(z)

Dtδ(f ∗ h)(z)
+ α

(Dnδ (f ∗ g)(z))′(
Dtδ(f ∗ h)(z)

)′ − 1

]
= [p(z)]λ , (7)

1 +
1

τ

[
(1− α)

Dnδ (F ∗ g)(w)

Dtδ(F ∗ h)(w)
+ α

(Dnδ (F ∗ g)(w))′(
Dtδ(F ∗ h)(w)

)′ − 1

]
= [q(w)]λ , (8)

where F = f −1, p, q in P and have the following forms

p(z) = 1 + pmz
m + p2mz

2m + · · · ,

q(w) = 1 + qmw
m + q2mw

2m + · · · .

Clearly, we deduce that

[p(z)]λ = 1 + λpmz
m +

(
λp2m +

λ(λ− 1)

2
p2m

)
z2m + · · · ,

[q(w)]λ = 1 + λqmw
m +

(
λq2m +

λ(λ− 1)

2
q2m

)
w2m + · · · .

Additionaly,

1 + 1
τ

[
(1− α)D

n
δ (f∗g)(z)

Dt
δ
(f∗h)(z)

+ α
(Dnδ (f∗g)(z))′(
Dt
δ
(f∗h)(z)

)′ − 1

]
= 1 +

(1 +mα)

τ

[
(1 +mδ)ngm+1 − (1 +mδ)thm+1

]
am+1z

m+

{
(1 + 2mα)

[
(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1

]
a2m+1 − (1 + 2mα+m2α)

[
(1 +mδ)t+nhm+1gm+1 − (1 +mδ)2th2

m+1

]
a2m+1

}
τ

z2m + · · ·

and

1 + 1
τ

[
(1− α)D

n
δ (F∗g)(w)

Dt
δ
(F∗h)(w)

+ α
(Dnδ (F∗g)(w))′(
Dt
δ
(F∗h)(w)

)′ − 1

]
= 1−

(1 +mα)

τ

[
(1 +mδ)ngm+1 − (1 +mδ)thm+1

]
am+1w

m+

{
(1 + 2mα)

[
(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1

] [
(1 +m)a2m+1 − a2m+1

]
− (1 + 2mα+m2α)

[
(1 +mδ)t+nhm+1gm+1 − (1 +mδ)2th2

m+1

]
a2m+1

}
τ

w2m + · · · .

Now, equating the coefficients in (7) and (8), we have

(1 +mα)
[
(1 +mδ)ngm+1 − (1 +mδ)thm+1

]
= τλpm, (9)

(1 + 2mα)
[
(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1

]
a2m+1

−(1 + 2mα+m2α)
[
(1 +mδ)t+nhm+1gm+1 − (1 +mδ)2th2m+1

]
a2m+1 = τ

(
λp2m +

λ(λ−1)
2 p2m

)
,

(10)

m(1− λ)
[
2a2m+1 − (λm+ 1)a2m+1

]
= τ

(
λp2m +

λ(λ− 1)

2
p2m

)
and

−(1 +mα)
[
(1 +mδ)ngm+1 − (1 +mδ)thm+1

]
= τλqm, (11)
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(1 + 2mα)
[
(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1

] [
(1 +m)a2m+1 − a2m+1

]
−(1 + 2mα+m2α)

[
(1 +mδ)t+nhm+1gm+1 − (1 +mδ)2th2m+1

]
a2m+1 = τ

(
λq2m +

λ(λ−1)
2 q2m

)
.

(12)

From (9) and (11), we obtain
pm = −qm, (13)

2(1 +mα)2
[
(1 +mδ)ngm+1 − (1 +mδ)thm+1

]
a2m+1 = τ2λ2(p2m + q2m). (14)

Next, by adding Eqs. (10) and (12), we obtain{
(1 +m)(1 + 2mα)

[
(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1

]
−2(1 + 2mα+m2α)

[
(1 +mδ)t+nhm+1gm+1 − (1 +mδ)2th2m+1

]}
a2m+1 = τ

(
λ (p2m + q2m) +

λ(λ−1)
2 (p2m + q2m)

)
.

Therefore, from (14), we get

a2m+1 =
τ2λ2 (p2m + q2m)

A
, (15)

where

A = τλ(1 +m)(1 + 2mα)
[
(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1

]
−2τλ(1 + 2mα+m2α)

[
(1 +mδ)t+nhm+1gm+1 − (1 +mδ)2th2m+1

]
− (λ− 1)(1 +mα)2

[
(1 +mδ)ngm+1 − (1 +mδ)thm+1

]2
.

Now taking the absolute value of (15) and appying Lemma 1 for the coefficients p2m and q2m, we have the following inequality

|am+1| ≤
2 |τ |λ√
|A|

.

Next, so as to obtain solution of the coefficient bound on |a2m+1| , we subtract (12) from (10). We thus have

(1 + 2mα)
[
(1 + 2mδ)

n
g2m+1 − (1 + 2mδ)

t
h2m+1

] [
2a2m+1 − (1 +m)a

2
m+1

]
= τ

(
λ (p2m − q2m) +

λ(λ− 1)

2
(p

2
m − q

2
m)

)
. (16)

Also using (15) in (16) we obtain that

a2m+1 =
τλ (p2m − q2m)

2(1 + 2mα) [(1 + 2mδ)ng2m+1 − (1 + 2mδ)th2m+1]
+

(m+ 1)τ2λ2 (p2m + q2m)

2A
. (17)

Taking the absolute value of (17) and applying Lemma 1.1 again for coefficients p2m, pm and q2m, qm we get the desired result. This completes
the proof of Theorem 1. �

3 Concluding remark

Various choices of the functions h, g as mentioned above and by specializing on the parameters m, τ, t, n, δ we state some interesting results
analogous to Theorem 1. The details involved may be left as an exercise for the interested reader.
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