Conference Proceeding of 2nd International Conference on Mathematical Advances and Applications (ICOMAA-2019).

Coefficient Bounds for a Subclass of m-fold Symmetric Bi-univalent Functions Involving Hadamard Product and Differential Operator

F. Müge Sakar ${ }^{1}$ S. Melike Aydoğan² Şahsene Altınkaya3,*

${ }^{1}$ Department of Business Administration, Dicle University, Diyarbakır, Turkey, ORCID: 0000-0002-3884-3957
${ }^{2}$ Department of Mathematics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey, ORCID:0000-0002-4822-9571
${ }^{3}$ Department of Mathematics, Bursa Uludag University Bursa, Turkey, ORCID: 0000-0002-7950-8450

* Corresponding Author E-mail: sahsenealtinkaya@gmail.com

Abstract

In this study, we construct a new subclass of m-fold symmetric bi-univalent functions using by Hadamard product and generalized Salagean differential operator in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$. We establish upper bounds for the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ belonging to this new class. The results presented here generalize some of the earlier studies.

Keywords: Bi-univalent functions, Coefficient estimates, m-fold symmetric functions.

1 Introduction

Let A be the family of analytic functions, normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the following form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

in the open unit disk D. We also denote by S the subclass of functions in A which are univalent in U (see for details [4]).
According to the Koebe-One Quarter Theorem [4], it provides that the image of U under every univalent function $f \in A$ contains a disk of radius $1 / 4$. Thus every univalent function $f \in A$ has an inverse f^{-1} satisfying $f^{-1}(f(z))=z$ and $f\left(f^{-1}(w)\right)=w$ $\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
F(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of bi-univalent functions in U given by (1). The detailed information about the class of Σ was given in the references [2], [6], [7] and [10].
The Hadamard product or convolution of two functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in A$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in A$, denoted by $f * g$, is defined by

$$
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} \quad(z \in U) .
$$

For $\delta \geq 1$ and $f \in A$, Al-Obodi [1] introduced the following differential operator:

$$
\begin{align*}
& D_{\delta}^{0} f(z)=f(z) \\
& D_{\delta}^{1} f(z)=(1-\delta) f(z)+\delta z f^{\prime}(z)=D_{\delta} f(z) \tag{3}\\
& \vdots \\
& D_{\delta}^{n} f(z)=(1-\delta) D_{\delta}^{n-1} f(z)+\delta z\left(D_{\delta}^{n-1} f(z)\right)^{\prime}=D\left(D_{\delta}^{n} f(z)\right) \quad\left(z \in U, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) .
\end{align*}
$$

If f is given by (1), we see that

$$
D_{\delta}^{n} f(z)=z+\sum_{k=2}^{\infty}[1+(k-1) \delta]^{n} a_{k} z^{k}
$$

with $D_{\delta}^{n} f(0)=0$. It is worthy mentioning that when $\delta=1$ in (3), we have the differential operator of Salagean [9].

Let m be a positive integer. A domain E is said to be m-fold symmetric if a rotation of E about the origin through an angle $2 \pi / m$ carries E on itself. It follows that, a function f analytic in U is said to be m-fold symmetric if

$$
f\left(e^{2 \pi i / m} z\right)=e^{2 \pi i / m} f(z) .
$$

A function is said to be m-fold symmetric if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in U, m \in \mathbb{N}) . \tag{4}
\end{equation*}
$$

Let S_{m} the class of m-fold symmetric univalent functions in U, which are normalized by the series expansion (4). In fact, the functions in the class S are one-fold symmetric. Analogous to the concept of m-fold symmetric univalent functions, we here introduced the concept of m-fold symmetric bi-univalent functions. Each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$. The normalized form of f is given as in (4) and the series expansion for f^{-1}, which has been recently proven by Srivastava et al. [9], is given as follows:

$$
\begin{aligned}
F(w)=f^{-1}(w)= & \left.w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right)\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots .
\end{aligned}
$$

We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in U. For $m=1$, the formula (4) coincides with the formula (2) of the class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}, \quad\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}, \quad\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}\right]
$$

The coefficient problem for m-fold symmetric analytic bi-univalent functions is one of the favourite subjects of Geometric Function Theory in these days, (see, e.g., [3], [5], [11], [12]).

Here, the aim of this study is to determine upper coefficients bounds $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ belonging to the newly defined subclass.
Firstly, in order to derive our main results, we require the following lemma.
Lemma 1. (See [8]) If a function $p \in P$ is given by

$$
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in U),
$$

then $\left|c_{i}\right|$ for each $i \in \mathbb{N}$, where the Caratheodory class P is the family of all functions p analytic in U for which $\Re(p(z))>0$ and $p(0)=1$.

2 Coefficient bounds for the functions class $\Sigma_{m}^{t, n, \delta}(\tau, \alpha, \lambda)$

Definition 1. A function f given by (4) is said to be in the class

$$
\Sigma_{m}^{t, n, \delta}(\tau, \alpha, \lambda) \quad\left(\tau \in \mathbb{C} \backslash\{0\}, 0<\alpha \leq 1, \lambda>0, t, n \in \mathbb{N}_{0}, t>n, \delta \geq 1, z, w \in U\right)
$$

if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma_{m}, \quad\left|\arg \left(1+\frac{1}{\tau}\left[(1-\alpha) \frac{D_{\delta}^{n}(f * g)(z)}{D_{\delta}^{t}(f * h)(z)}+\alpha \frac{\left(D_{\delta}^{n}(f * g)(z)\right)^{\prime}}{\left(D_{\delta}^{t}(f * h)(z)\right)^{\prime}}-1\right]\right)\right|<\frac{\alpha \pi}{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(1+\frac{1}{\tau}\left[(1-\alpha) \frac{D_{\delta}^{n}(F * g)(w)}{D_{\delta}^{t}(F * h)(w)}+\alpha \frac{\left(D_{\delta}^{n}(F * g)(w)\right)^{\prime}}{\left(D_{\delta}^{t}(F * h)(w)\right)^{\prime}}-1\right]\right)\right|<\frac{\alpha \pi}{2}, \tag{6}
\end{equation*}
$$

where $g(z)=z+\sum_{k=1}^{\infty} g_{m k+1} z^{m k+1}, h(z)=z+\sum_{k=1}^{\infty} h_{m k+1} z^{m k+1}$ and the function F is extension of f^{-1} to U.
We start by finding the estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for the functions in the $\Sigma_{m}^{t, n, \delta}(\tau, \alpha, \lambda)$.

Theorem 1. Let the function f given by (4) be in the class $\Sigma_{m}^{t, n, \delta}(\tau, \alpha, \lambda)$. Then

$$
\left|a_{m+1}\right| \leq \frac{2|\tau| \lambda}{\sqrt{|A|}}
$$

and

$$
\left|a_{2 m+1}\right| \leq \frac{2|\tau| \lambda}{(1+2 m \alpha)\left|(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right|}+\frac{2(m+1) \tau^{2} \lambda^{2}}{|A|}
$$

where

$$
\begin{aligned}
& A=\tau \lambda(1+m)(1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right] \\
& -2 \tau \lambda\left(1+2 m \alpha+m^{2} \alpha\right)\left[(1+m \delta)^{t+n} h_{m+1} g_{m+1}-(1+m \delta)^{2 t} h_{m+1}^{2}\right]-(\lambda-1)(1+m \alpha)^{2}\left[(1+m \delta)^{n} g_{m+1}-(1+m \delta)^{t} h_{m+1}\right]^{2} .
\end{aligned}
$$

Proof: Suppose that $\Sigma_{m}^{t, n, \delta}(\tau, \alpha, \lambda)$. From the conditions (5) and (6), we can write

$$
\begin{align*}
& 1+\frac{1}{\tau}\left[(1-\alpha) \frac{D_{\delta}^{n}(f * g)(z)}{D_{\delta}^{t}(f * h)(z)}+\alpha \frac{\left(D_{\delta}^{n}(f * g)(z)\right)^{\prime}}{\left(D_{\delta}^{t}(f * h)(z)\right)^{\prime}}-1\right]=[p(z)]^{\lambda} \tag{7}\\
& 1+\frac{1}{\tau}\left[(1-\alpha) \frac{D_{\delta}^{n}(F * g)(w)}{D_{\delta}^{t}(F * h)(w)}+\alpha \frac{\left(D_{\delta}^{n}(F * g)(w)\right)^{\prime}}{\left(D_{\delta}^{t}(F * h)(w)\right)^{\prime}}-1\right]=[q(w)]^{\lambda}, \tag{8}
\end{align*}
$$

where $F=f^{-1}, p, q$ in P and have the following forms

$$
\begin{gathered}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+\cdots \\
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+\cdots
\end{gathered}
$$

Clearly, we deduce that

$$
\begin{gathered}
{[p(z)]^{\lambda}=1+\lambda p_{m} z^{m}+\left(\lambda p_{2 m}+\frac{\lambda(\lambda-1)}{2} p_{m}^{2}\right) z^{2 m}+\cdots} \\
{[q(w)]^{\lambda}=1+\lambda q_{m} w^{m}+\left(\lambda q_{2 m}+\frac{\lambda(\lambda-1)}{2} q_{m}^{2}\right) w^{2 m}+\cdots}
\end{gathered}
$$

Additionaly,

$$
\begin{aligned}
& 1+\frac{1}{\tau}\left[(1-\alpha) \frac{D_{\delta}^{n}(f * g)(z)}{D_{\delta}^{t}(f * h)(z)}+\alpha \frac{\left(D_{\delta}^{n}(f * g)(z)\right)^{\prime}}{\left(D_{\delta}^{t}(f * h)(z)\right)^{\prime}}-1\right]=1+\frac{(1+m \alpha)}{\tau}\left[(1+m \delta)^{n} g_{m+1}-(1+m \delta)^{t} h_{m+1}\right] a_{m+1} z^{m}+ \\
& \frac{\left\{(1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right] a_{2 m+1}-\left(1+2 m \alpha+m^{2} \alpha\right)\left[(1+m \delta)^{t+n} h_{m+1} g_{m+1}-(1+m \delta)^{2 t} h_{m+1}^{2}\right] a_{m+1}^{2}\right\}}{\tau} z^{2 m}+\cdots
\end{aligned}
$$

and

$$
1+\frac{1}{\tau}\left[(1-\alpha) \frac{D_{\delta}^{n}(F * g)(w)}{D_{\delta}^{t}(F * h)(w)}+\alpha \frac{\left(D_{\delta}^{n}(F * g)(w)\right)^{\prime}}{\left(D_{\delta}^{t}(F * h)(w)\right)^{\prime}}-1\right]=1-\frac{(1+m \alpha)}{\tau}\left[(1+m \delta)^{n} g_{m+1}-(1+m \delta)^{t} h_{m+1}\right] a_{m+1} w^{m}+
$$

$$
\frac{\left\{(1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right]\left[(1+m) a_{m+1}^{2}-a_{2 m+1}\right]-\left(1+2 m \alpha+m^{2} \alpha\right)\left[(1+m \delta)^{t+n} h_{m+1} g_{m+1}-(1+m \delta)^{2 t} h_{m+1}^{2}\right] a_{m+1}^{2}\right\}}{\tau} w^{2 m}
$$

Now, equating the coefficients in (7) and (8), we have

$$
\begin{equation*}
(1+m \alpha)\left[(1+m \delta)^{n} g_{m+1}-(1+m \delta)^{t} h_{m+1}\right]=\tau \lambda p_{m} \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& (1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right] a_{2 m+1} \\
& -\left(1+2 m \alpha+m^{2} \alpha\right)\left[(1+m \delta)^{t+n} h_{m+1} g_{m+1}-(1+m \delta)^{2 t} h_{m+1}^{2}\right] a_{m+1}^{2}=\tau\left(\lambda p_{2 m}+\frac{\lambda(\lambda-1)}{2} p_{m}^{2}\right), \tag{10}\\
& \quad m(1-\lambda)\left[2 a_{2 m+1}-(\lambda m+1) a_{m+1}^{2}\right]=\tau\left(\lambda p_{2 m}+\frac{\lambda(\lambda-1)}{2} p_{m}^{2}\right)
\end{align*}
$$

and

$$
\begin{equation*}
-(1+m \alpha)\left[(1+m \delta)^{n} g_{m+1}-(1+m \delta)^{t} h_{m+1}\right]=\tau \lambda q_{m} \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& (1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right]\left[(1+m) a_{m+1}^{2}-a_{2 m+1}\right] \\
& -\left(1+2 m \alpha+m^{2} \alpha\right)\left[(1+m \delta)^{t+n} h_{m+1} g_{m+1}-(1+m \delta)^{2 t} h_{m+1}^{2}\right] a_{m+1}^{2}=\tau\left(\lambda q_{2 m}+\frac{\lambda(\lambda-1)}{2} q_{m}^{2}\right) \tag{12}
\end{align*}
$$

From (9) and (11), we obtain

$$
\begin{gather*}
p_{m}=-q_{m} \tag{13}\\
2(1+m \alpha)^{2}\left[(1+m \delta)^{n} g_{m+1}-(1+m \delta)^{t} h_{m+1}\right] a_{m+1}^{2}=\tau^{2} \lambda^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{14}
\end{gather*}
$$

Next, by adding Eqs. (10) and (12), we obtain

$$
\begin{aligned}
& \left\{(1+m)(1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right]\right. \\
& \left.-2\left(1+2 m \alpha+m^{2} \alpha\right)\left[(1+m \delta)^{t+n} h_{m+1} g_{m+1}-(1+m \delta)^{2 t} h_{m+1}^{2}\right]\right\} a_{m+1}^{2}=\tau\left(\lambda\left(p_{2 m}+q_{2 m}\right)+\frac{\lambda(\lambda-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right)\right)
\end{aligned}
$$

Therefore, from (14), we get

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\tau^{2} \lambda^{2}\left(p_{2 m}+q_{2 m}\right)}{A} \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\tau \lambda(1+m)(1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right] \\
& -2 \tau \lambda\left(1+2 m \alpha+m^{2} \alpha\right)\left[(1+m \delta)^{t+n} h_{m+1} g_{m+1}-(1+m \delta)^{2 t} h_{m+1}^{2}\right]-(\lambda-1)(1+m \alpha)^{2}\left[(1+m \delta)^{n} g_{m+1}-(1+m \delta)^{t} h_{m+1}\right]^{2}
\end{aligned}
$$

Now taking the absolute value of (15) and appying Lemma 1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we have the following inequality

$$
\left|a_{m+1}\right| \leq \frac{2|\tau| \lambda}{\sqrt{|A|}}
$$

Next, so as to obtain solution of the coefficient bound on $\left|a_{2 m+1}\right|$, we subtract (12) from (10). We thus have

$$
\begin{equation*}
(1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right]\left[2 a_{2 m+1}-(1+m) a_{m+1}^{2}\right]=\tau\left(\lambda\left(p_{2 m}-q_{2 m}\right)+\frac{\lambda(\lambda-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right)\right) \tag{16}
\end{equation*}
$$

Also using (15) in (16) we obtain that

$$
\begin{equation*}
a_{2 m+1}=\frac{\tau \lambda\left(p_{2 m}-q_{2 m}\right)}{2(1+2 m \alpha)\left[(1+2 m \delta)^{n} g_{2 m+1}-(1+2 m \delta)^{t} h_{2 m+1}\right]}+\frac{(m+1) \tau^{2} \lambda^{2}\left(p_{2 m}+q_{2 m}\right)}{2 A} \tag{17}
\end{equation*}
$$

Taking the absolute value of (17) and applying Lemma 1.1 again for coefficients $p_{2 m}, p_{m}$ and $q_{2 m}, q_{m}$ we get the desired result. This completes the proof of Theorem 1.

3 Concluding remark

Various choices of the functions h, g as mentioned above and by specializing on the parameters m, τ, t, n, δ we state some interesting results analogous to Theorem 1. The details involved may be left as an exercise for the interested reader.

Acknowledgement

The work presented here is supported by Batman University Scientific Research Project Coordination Unit. Project Number: BTUBAP2018-IIBF-2.

4 References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27 (2004), 1429-1436.
[2] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babeş-Bolyai Mathematica, 31 (1986), 70-77.
[3] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions, Turkish J. Math., 40 (2016), $1386-1397$.
[4] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA 259, 1983.
[5] S. G. Hamidi, J. M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math., 25 (2014), 1-8.
[6] M. Lewin, On a coefficient problem for bi-univalent functions, Proceedings of the American Mathematical Society, 18 (1967), 63-68.
[7] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis, 32 (1969), 100-112.
[8] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Gottingen, 1975.
[9] G. S. Salagean, Subclasses of univalent functions, in Complex Analysis, Fifth Romanian Finish Seminar, Part 1 (Bucharest, 1981), 1013 of Lecture Notes in Mathematics, 362-372, Springer, Berlin, Germany, 1983.
[10] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23 (2010), $1188-1192$.
[11] H. M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal, 7 (2014), 1-10.
[12] S. Sumer Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math., 40 (2016), 641-646.

