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Abstract

Forecasting the volatility of financial markets is one of the important issues in empirical
finance that absorbed the interest of many researchers in the last decade. As it is known,
there has been many studies uncovering the properties of competing volatility models. In
this study, both traditional (unconditional) and conditional volatility models, which have
the implications for finance that investors can predict the risk, are analyzed. In this
study, Box-Jenkins model (ARIMA) and ARCH-type models (ARCH-GARCH-EGARCH-
TARCH and GARCH-M) are discussed for the time-dependence in variance that is
regularly observed in financial time series and various classical volatility forecasting
approaches are compared using ISE-100 Stock Index for the time period between the
years 1987 and 2009. As a result, it is found that IMKB-100 returns series include;
leptokurtosis, leverage effects, volatility clustering (or pooling), volatility smile and long
memory and TGARCH (1,1) is the best fitting model for modeling the volatility of Ise-100
Index.
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Istanbul Menkul Kiymetler Borsasi'nda volatilitenin modellenmesi: Box-Jenkins
modellerden ARCH ailesi modellere gecgis

Ozet

Finansal piyasalarin oynakhdinin tahmin edilmesi son zamanlarda uygulama alaninda
bircok arastirmacinin dikkatini ¢eken konular arasinda gelmektedir. Bilindigi Uzere,
volatilite modellerinin birbirlerine kiyasla Ustiin 6zelliklerini ortaya koymaya galisan birgok
arastirma bulunmaktadir. Bu makalede, yatirrmcilarin risklerini belirleyebilmelerinde
kullanilan, bircok finansal uygulamaya konu olan, geleneksel (kosulsuz) ve kosullu
varyans modelleri incelenmistir. Ayrica, finansal zaman serilerinde sikga godzlemlenen
zamana badli dediskenligi gézlemlemek icin Box Jenkins ve ARCH ailesi modelleri (ARCH-
GARCH-EGARCH-TARCH ve GARCH-M) ele alinmis ve 1987-2009 yillari arasinda IMKB-
100 Endeksi verilerinden hareketle cesitli klasik oynaklik tahminleme modelleri goéreceli
olarak karsilastinimistir. Arastirma sonuglari, IMKB-100 getiri serisinde kalin kuyruk
probleminin bulundugu, oynaklik kimelenmelerinin oldugu, negatif soklarin etkisinin
pozitif soklara oranla daha etkili oldugu ve uzun sirdga, veri setinin uzun hafiza icerdigi
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ve ayrica TGARCH (1,1)'in IMKB-100 Endeksi’'nin oynaklagini tahminleyen en iyi model
oldugunu ortaya koymustur.

Anahtar Sézciikler: Volatilite, ARIMA modelleri, ARCH modelleri, zaman serileri, IMKB.
1. Introduction

Volatility is one of the essential concepts of modern finance in predicting the trade-off
between risk and expected return, where risk is associated with some notion of price
volatility. As such, measuring and forecasting volatility is arguably among the most
important pursuits in empirical asset pricing finance and risk management (Andersen et
al., 2005). However, researches in finance have devoted significant effort in the last two
decades to coming up with better models to estimate volatility.

The frequency of financial time series is often high and many high-frequency financial
time series have the property of ‘long-memory’ (the presence of statistically significant
correlations between observations that are a large distance apart). Another distinguishing
feature of many financial time series is the time-varying volatility or ‘heteroscedasticity’
of the data (Harris and Sollis, 2003: 213). As the high-frequency financial data exhibits
volatility clustering, large (small) price changes tend to be followed by large (small)
changes of either sign (Mandelbrot, 1963).

The statistical analysis of financial time series provides evidence of various stylized facts,
among which volatility clustering has received considerable attention. Many models have
been added throughout the years to the Autoregressive Conditional Heteroscedasticity
(ARCH) family, following the seminal paper by Engle (1982), which capture the short-run
dependency of the conditional variances.

This study focuses on modeling and forecasting the volatility with the ARCH-type
volatility models in Turkish stock market, and compares the models performance. The
purpose of this article is to quantify the afore-mentioned five models, using the daily
closing prices of Istanbul Stock Exchange 100 Index (ISE-100) from the period July 3rd
1987 to July 3rd 2009, representing 5377 observations.

2. The Models

In this section, we introduce an Autoregressive Integrated Moving Average process
(ARIMA) for the index returns. A basic assumption common to each of these models is
that economic and financial data contain both permanent (represented by a random walk
process) and transitory components (represented by a moving average process). Our
model is established on Box Jenkins Technique (1976) and a brief explanation of AR-MA
Models and Box-Jenkins Technique are given below.

Auto-Regressive (AR) Models

One common approach for modeling univariate time series is the Auto-Regressive (AR)
model. In this application, if P; represents the value of claims during day t, a general
form of an Autoregressive model would be written as follows:

R=0+®F,+D,R,+..+D R+, (1)
g is a random (white noise) error term with zero mean and constant variance.
Essentially, an Auto-Regressive model is a linear regression of the current value of the

series against one or more prior values. The parameter p is referred to as the order of
the AR model.
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Moving Average (MA) Models

Another approach for discerning patterns in univariate time series is the moving average
(MA) model written generally as follows:

P=u+u-6u.,-6,u ,—...... - Hqut,q (2)

Where terms are defined as before (P; is the value of claims in day ¢, u is the mean value
of the time series, & are white noise terms in day t) and the 6; (j = 1, 2, ..q) are
parameters of the model that are to be estimated by the statistical procedure. The value
of g is called as the order of the MA model.

ARIMA (Box-Jenkins) Models

Box and Jenkins have developed a systematic methodology for identifying and estimating
models that could simultaneously incorporate both AR and MA approaches. They begin by
supposing that both Equations (1) and (2) can be applied to use their approach,

however, it requires that the time series are “stationary”.*

Model Estimation

Considering equations together, the identification step suggested the following generic
form of ARIMA process:

AR =pu+®R  +®,R ,+...+ QR +U —OU_ —OU,_, —.......... -0u,_, (3)

Where,

P,, P,_,, P,_,,....are the stationary price data;

U, Up_q, Ue—q, .....ale the present and prior forecast errors;

u, ®, ®_,, Oy, ..., 0¢, 0,_4, 0,_,,.... are the parameters of the regression model

ARMA models are quite flexible because they include both AR and MA elements; however,
building good ARMA models requires considerably more expertise than is necessary for
more frequently-used statistical methods.

ARCH Model

The first model that provides a systematic framework for volatility modelling is the ARCH
model of Engle (1982). The basic idea of ARCH model is that (a) the mean-corrected
asset return a; is serially uncorrelated, but dependent, and (b) the dependence of a; can
be described by a simple quadratic function of its lagged values (Tsay, 2002: 83). This
modelling technique explicitly recognizes the temporal dependence suggested by the
phenomenon of volatility clustering. According to the ARCH model the conditional error
distribution is normal, but with conditional variance equal to a linear function of past
squared observations®. Thus, there is a tendency for extreme values to be followed by
other extreme values of unpredictable sign.

The basic ARCH (q) model can be expressed as:

2 2 2
O—t = hl = ao + alut—l S T + Oqut_q (4)

4 A stationary time series is one for which the mean, variance, and autocorrelation structure do not change over
time. Conceptually, this may be visualized as a time series that is essentially “flat” over time (that is, without a
trend) and for which the range of variations around the mean is also constant over time, and for which no
periodic fluctuations (e.g., seasonality) are evident.

5 Some formulations use past errors. See Bollerslev (1986).
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where u; is a sequence of independent and identically distributed random variables with
zero mean and o2 = 1, a,>0, a,=0 for the lags greater than zero.

2 2
o, =h =a,+au, (5)

This is an ARCH(1) model as it contains only one lag on the squared error term, however
it is possible to extend this model by including more lags, if there are q lags it is termed
as an ARCH(q) model.

GARCH Model

A GARCH(qg,p) model is defined as a discrete time stochastic process u; of the form:

U =w h (6)
U, :Vto'tz =Vt\/ﬁ (7)

2. . .
Where O, is written as h; and v; has a zero mean and variance of one. We can then
rewrite the conditional variance as:

q p
h, = + Z;aiut{i + Z;,/Bi h_; (8)

where w, ~ii.d.N(01) , h, =a0+a1ut{1+....+aqut{q +Bh,+..B,h ,,and q >0, p>0,
>0, 20 (i=1,..,q)and £,2>0 (i = 1,...,p). When p =0 we have an ARCH(q) model.
In most applications p=qg=1 is found to suffice. In this case:

h =y +auly+ B, (9)
where the stationarity condition is given by a; + 8, < 1.

ARCH-M Model

The standard ARCH effect in data implies ‘volatility clusters’ which can be captured to
place appropriate structures to the volatility of the series, which may be otherwise highly
unpredictable and difficult to interpret. The coefficients derived from estimated ARCH
models are more efficient than those obtained from simple OLS method and offer a
special ground for inference making.

As a variant to the general ARCH model described above, we employ here the ARCH-M
model introduced by Engel et.al (1987) wherein each time the mean of the process is
determined by additional information contained in standard deviation seen at the same
time. The ARCH-M modeling is of special interest in studying financial time series as the
conditional variance plays an important role in determining an explicit trade-off between
expected returns and the variance or the covariance among returns. In the traditional
capital asset pricing model (CAPM), for example, the expected excess return on the
market portfolio is linear in its conditional variance, suggesting the usefulness of ARCH-M
type models. In ARCH-M model it is assumed that the risk premium is an increasing

function of the conditional variance of U, (Enders, 2004). Mathematically, ifh is the

conditional variance of U, the risk premium can be expressed as

=g+, 6>0

Where h is the ARCH (q) process:
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h, =a0+iaiut2—i (10)
i1

Asymmetric GARCH Models
GJR-GARCH (T-GARCH)

Asymmetric GARCH models due to the leverage effect with asset prices, where a positive
shock has less effect on the conditional variance compared to a negative shock. This can
be incorporated into the GARCH model using a dummy variable. This was introduced by
Glosten, Jangathann and Runkle (GJR), and showed that asymmetric adjustment was an
important consideration with asset prices. The model is of the form:

hy =ay+ a1u?—1 + Bheq + Au§—11t—1 (11)

“I” is a dummy variable that takes the value of 1 when the shock is less than 0
(negative) and 0 otherwise. To determine if there is asymmetric adjustment depends on
the significance of the last term, which can be determined using the t-statistic.

E-GARCH Model
In this model, the conditional variance may be expressed as follows:

Ut-1

Vht-1

The form of the equation indicates that conditional variance is an exponential function of
the variables under analysis, which automatically ensures its positive character. The
exponential nature of EGARCH ensures that external unexpected shocks will have a
stronger influence on the predicted volatility than TARCH. An asymmetric effect is
indicated by the non-zero value of y and the presence of a ‘leverage effect’ is shown by
its negative value.

ln(ht) =Qy + Z?:l o

+z‘§=1yﬁt;_11 +30_, BiIn(he_;) (12)

3. Literature Review

Time series realizations of returns often exhibit time-dependent volatility. These facts
allow an alternative volatility specification based on non-linear models. Several authors
have fitted time series models to obtain estimates of conditional or expected volatility
from return data. This idea was first formalized in Engle’s (1982) ARCH model, which is
based on the specification of conditional densities at successive periods of time with a
time-dependent volatility process.

The ARCH model is based on the assumption that forecasts of the variance at some
future point in time can also be improved by using recent information. Since the
publication of the original ARCH paper in 1982, these methods have been used by many
researchers. Alternative formulations have been suggested and used and the range of
applications has continually widened (see Bollerslev et al., (1992) and Bera and Higgins
(1993) for a survey of these models). In the ARCH model (Engle, 1982) and its extension
as generalized ARCH (Bollerslev, 1986), or exponential GARCH (Nelson, 1991)
approximations, time series volatility is measured by means of the conditional variance of
its unexpected component, that is, a distributed lag over squared innovations. Fitting
GARCH models to stock price data provides an alternative way to estimate conditional
volatility and has become standard in recent empirical applications.

GoOkgce (2001) has studied ARCH-class models to estimate the appropriate model for
forecasting volatility in ISE for the period of 02.01.1989-31.12.1997 with 2245 daily
observation. It is found that the best fitting model is GARCH (1,1) for ISE 100-Index.
Furthermore, he found a strong and positive relationship between daily trading volume
and daily rate of return.
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Aydin (2003) has examined the behavior of the Istanbul Stock-Exchange Index, ISE-30,
which includes 30 leading Turkish companies. In the Ms. Thesis, it is observed that there
are no normality, volatility clusters, negative skewness, large kurtosis, and
autocorrelation in the financial time series data. Therefore, EWMA and Generalized ARCH
models were applied to the index. It is found that the best fitting model is GARCH(1,1)
and only one-day effect has observed both for EWMA and GARCH models.

In another study, Mazibas (2005) has examined the out-of-sample forecasting accuracy
of fifteen symmetrical and asymmetrical GARCH models for daily, weekly and monthly
volatility in composite, financial, services and industry indices of Istanbul Stock Exchange
(ISE). Model estimations have demonstrated the existence of asymmetry and leverage
effects in daily, weekly and monthly market data. In model forecasts, it has been found
that weekly and monthly forecasts are more precise than daily forecasts. Moreover, it has
also been found that due to high volatility in daily returns, ARCH-type models are
incompetent in modeling daily volatility.

Akgin and Sayyan (2005) have examined the asymmetric response of stock returns in
ISE-30° to news by using Asymmetric Conditional Heteroscedasticity models (EGARCH,
GJR, APARCH, FIEGARCH, FIAPARCH) for the period 04.01.2000 to 25.04.2005. Their
findings show that forecasting volatility in ISE-30 stock returns with Asymmetric
Conditional Heteroscedasticity models especially APARCH and FIAPARCH models provides
the most accurate volatility forecasts. Authors also claimed that using student-t or
skewed student-t distribution instead of normal distribution is more appropriate in
modeling and forecasting of financial data with negative skewness and large kurtosis.

Sarioglu (2006), in her PhD thesis, has tried to answer “how volatility of common stocks
traded in Istanbul Stock Exchange (ISE) can be estimated” and analyzed ISE-100 Index
for the time period January 1991 to December 2004. The models in the study have been
examined for four cross sections by using two different statistical analyses. According to
the regression analysis, conditional models were found more efficient and unbiased
predictors than unconditional models in forecasting and modeling the volatility in ISE-100
Index. She also pointed out GARCH (1,1) and EGARCH (1,1) models are the best fitting
models for ISE-100 Index.

Ozden (2008), has researched the best fitting model for the Istanbul Stock Exchange
(ISE) 100 Index’s return volatility with ARCH, GARCH, EGARCH, TGARCH models. He has
used daily closing values between the dates of 04.01.2000 and 29.09.2008 and found
that the best model for the mean equation is ARMA(2,2). It is also found that
TGARCH(1,1) is the more precise model to forecast stock returns volatility in ISE.

In her study Atakan (2009) has investigated the most appropriate method for modeling
the volatility at the Istanbul Stock Exchange (ISE) by using the ARCH type models. The
research spans the period of 1987-2008 of ISE-100 Index and daily closing data has
used in the study. Author observed that the volatility of ISE-100 Index has the ARCH
effect and the most appropriate model for forecasting the volatility of ISE-100 Index is
GARCH(1,1). Moreover, it is found that during the crises and uncertain periods, the
volatility increases. In the analysis it is observed that IMKB-100 shows volatility
clustering in these periods.

6 Index includes the 30 shares with the highest capitalization traded in Istanbul Stock
Exchange
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4. Data and Methodology

The analysis is based on daily returns of ISE-100 Index which includes the hundred
shares with the highest capitalization traded in the Istanbul Stock Exchange (ISE), and
the data set covers the time period from 3 July 1987 to 3 July 2009, representing 5377
observations. Data has been obtained from the ISE’s web page. The data used in the
study consisted of time series of daily stock-market index based on daily closing prices,
in terms of local currency. The index did not include dividends and the returns in the
market (Rt) were computed by the first difference of the natural logarithm of stock
market index.

Pt

Re =1n(-2) + 100 (14)

t—-1
Where R; shows continuously compounded percentage change of index for the time
period t, P, denotes price index at t ( P.; is the same for preceding period) and In is the
natural logarithm. Minitab 14.0 and Eviews 6.0 statistical and econometric softwares are
used in analyzing the data set.

5. Empirical Findings

One of the first things to look at when analyzing a set of financial values are descriptive
statistics about financial data set, including the mean, standard deviation, skewness, and
kurtosis. The skewness measures the symmetry of the distribution and the kurtosis
measures the weight of the tails in the distribution. Histograms and box plots (which are
graphical representation of the quantiles, usually the quartiles) are also useful to
understand the shape and spread of the data.

5.1. Testing For Normality

An important feature of the return series is the presence of departures from normality in
the unconditional distribution. If the conditional distribution of the returns is i.i.d.’
normal, then we would expect the unconditional distribution of the returns to be normal,
too.

Table 1, given below, summarizes the basic properties of the data. The returns appear to
be somewhat asymmetric, as it is seen by positive skewness estimates which mean there
are more observations in the right-hand side (positive) tail than in left-hand tail. The
mean return of the data set is positive and close to zero. Kurtosis value which is larger
than 3 indicates a higher peak and fat tails. In any case, we can look at the skewness
and the kurtosis of the unconditional distribution of the variables to try to get a first
sense of how returns are distributed. Since we know that symmetric distributions have 0
skewness and that the normal distribution has kurtosis equal to 3, the empirical finding
of our analysis seems to have unconditional third moment (skewness) not close to zero,
so they have asymmetric unconditional distributions, and also they all present excess
unconditional kurtosis. Due to the fact that a normally distributed random variable should
have skewness and kurtosis near zero and three, respectively, we can say our data don't
show a normal distribution.

’ Independent and identically distributed
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Table 1 The Basic Statistics of IMKB-100’'s Returns Data

Summary for dinxu100
A nderson-Darling Normality Test

_ A-Squared 35.60

P-Value < 0.005

- Mean 0.1547

StDev 2.9116

V ariance 8.4773

Skew ness -0.04087

Kurtosis 3.02884

N 5376

Minimum -19.9785

1st Q uartile -1.4138

Median 0.1326

T T T T T T T 3rd Quartile 1.7167

s a2 G © © =2 28 Maximum 17.7736
95% Confidence Interval for Mean

* bl ® % KR 0.0768 0.2325
95% Confidence Interval for Median

0.0589 0.2024
~ 95% Confidence Interval for StDev

959%0 Confidence Intervals >.8576 2.9677

Mean -
Median -
0.05 0.10 0.15 0.20 0.25

Skewness and Kurtosis are based on the empirical data. The numerical methods for
testing normality compare empirical data with a theoretical distribution. Widely used
methods include the Kolmogorov-Smirnov (KS) test, Shapiro-Wilk test, Anderson-Darling
test, and Cramer-von Mises test (SAS Institute 1995). The KS and Shapiro-Wilk (SW)
tests are commonly used. It is widely known that the Kolmogorov type tests are more
suitable to analyze a data sample which has some specific distribution. For n > 2000, it
will be more appropriate to use KS to test the normality of the distribution®.

Kolmogorov-Smirnov and similar tests use the below hypotheses:
Ho: data set is normally distributed vs.
Ha: data set is not normally distributed

KS Test which has been conducted by using MINITAB program, provides the approximate
p-value < 0,010 and also leads us to assume normality of the data in our analysis. Since
we usually have an alpha value of 0.05, we should reject the null hypothesis that the
data follows a normal distribution. Finally, KS graph taken from outputs of the Minitab
program, shows S trend. In this case, the sample values don't fall very close to the line,
indicates that the data likely don't follow a normal distribution. As a result, we reject the
null hypothesis in favor of the alternative hypothesis (“the data have a non-normal
distribution” or “the factors are not independent”).

8 SAS Institute recommends to use KS test instead of SW when observation number is
greater than 2000.
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Table 2 Kolmogorov-Smirnov Test Outputs

Kolmogorov-Smirnov
Normal
Mean 0.1547
99.99 1 - o StDev 2.912
b N 5376
KS 0.052
99 P-Value <0.010
95
- 80
=
8 50 |
& 20 4
5 4
1 -
L 4
0.014 =
-20 -10 ) 10 20
dinxu100

Augmented Dickey Fuller and Phillips-Perron Tests

We can also test the random walk hypothesis by using unit root tests and spectral
analysis. Both the Augmented Dickey Fuller (1979) and Phillips-Perron (1988) tests can
be used to examine the univariate time series properties of the data to see if the random
walk hypothesis holds.

As it is known, a stochastic process {P,} is called a random walk if it follows:
Pt=‘u+Pt_1+ut (15)

In Equation (7) u, is a white noise® with E(u,) = 0 and Var(u,) = o If u = 0, it is called a
random walk with drift u. It is easy to verify that a random walk without drift is a
martingale:

E(P|Pi—y) = E(Pe—y + ue|P_y) = Py + E(ue) = Pey (16)

For EMH, only E(u¢|Qw1) = 0 is essential where Q.; represents information set. There are
also different versions of random walk hypothesis with respect to the distribution of u;
where u; denotes the prediction error. If index return follows a random walk, then price
changes are white noise. Therefore, testing whether returns are white noise is

observationally equivalent to the test of random walk in index changes. Given [, as the

percentage change inP,, the null hypothesis of market efficiency is thus formed as

testing for the standard statistical properties of a homoscedastic white noise process as
follows:

Ho:E(R)= 0, (17)
E(rtrt)= O'rz;
E(rr) = O;Vt#s.

° A time series r; is called white noise if it is a sequence of independent and identically
distributed ramdom variables with finite mean and variance. In particular, if ry is
normally distributed with mean zero and variance, the series is called a Gaussian white
noise ( Tsay, 2002:26-27)

259



R.I. Gékbulut, U. Giimrah, S. Derindere Késeoglu / Istanbul Universitesi Isletme Fakiiltesi Dergisi 40, 2, (2011)
251-266 © 2011

In the analysis, a standard Augmented Dickey-Fuller (1979) unit root test (ADF) is
employed on the Equation (18) and it is estimated with the lag length determined by
Akaike information criterion. Moreover, the lag length chosen was sufficient to eliminate
serial correlation in the error terms.

AR =a+fT+(p-DP,+Y. ®AR, +U, (18)

In Equation (18), P; is the respective time series; T is a linear time trend parameter; A is
the first difference operator; and u; denotes the error process with zero mean and
constant variance.

Ho. p-1=0, there is a unit root (i.e., difference stationary)
Ha: p-1<0,

Secondly, we have used an alternative unit root test which has proposed by Phillips and
Perron (1988). This test has the desirable feature that it allows for a weaker set of
assumptions concerning the error process, specifically, the presence of dependence and
heterogeneity in the error term. The presence of a unit root was tested using the Phillips-
Perron (PP) procedure given as below:

P=a+pt-T/2)+ 0P ¢, (19)

In the equation, P; denotes the respective time series; (t - T/2) is a time trend where T is
the sample size; and € is the error term. The hypothesis tested is;
Ho. p=1, the time series is nonstationary,

Ha.: p<1 the time series is stationary around a deterministic trend,

Tablo 3 The ADF P-P and KPSS Tests Outputs of Eviews 6.0

Test Critical Values Constant Constant & Trend None
t-Statistic -20.928%* -20.951%* -20.680%*

1% level -3.431 -3.960 -2.565

5% level -2.862 -3.411 -1.941

10% level -2.567 -3.127 -1.617

Test Critical Values Constant Constant & Trend None
Adj. t-Stat -65.535%* -65.531* -65.638*

1% level -3.431 -3.960 -2.565

5% level -2.862 -3.411 -1.941

10% level -2.567 -3.127 -1.617

Table 3 gives the result of Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit
root tests on the original series as well as the MacKinnon critical values for rejection of
the hypothesis of the existence of a unit root at the 5% level of significance. Since the
ADF and PP test statistics are larger in absolute values than the critical values, we reject
the hypothesis of non-stationarity. As we know, if a time series has a unit root, then it
follows a random walk; thus as per the results, we reject the hypothesis that says the
IMKB-100 Index returns show a random walk.

5.2. Modeling the Market Return Applying ARMA Model

Before implementing the ARIMA models for estimating index returns yields, we have
tested the return data for unit roots using the Augmented Dickey Fuller and the Phillips-
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Perron (PP) unit root tests in Section 4.1.4. Sequential tests are conducted to analyze
for the presence of the non-stationarity in both the levels and the first differences. As we
know, if the equations are stationary then it can be modelled. Since the models are found
to be stationary, our objective is to determine if the returns of index can be forecasted
by its own past values.

Tablo 4 Parameters of ARMA Type Models

AR(1) AR(2) AR(3) MA(1) MA(2)
a, 0.154* 0.154* 0.154* 0.154* 0.154*
@, 0.118% 0.118% 0.118%
@, 0.002 0.003
@, -0.006
0, 0.115% 0.118%
0, 0.017
03
F-stat 76.099% 38.042% 25.425% 74.585% 38.174%
AIC 4.961931 4.962483 4.962998 4.962045 4.962091
SIC 4.964383 4.966162 4.967903 4.964497 4.965768
MA(3) ARMA(1,1) | ARMA(1,2) | ARMA(1,3) | ARMA(2,1)
a, 0.154* 0.154%* 0.154%* 0.154* 0.154*
@, 0.134 -0.713% -0.585%** -0.663*
o, 0.105*
D5
0, 0.119% -0.016 0.833* 0.704%* 0.780%
0, 0.016 0.105%* 0.085%*
0, -0.014 -0.012
F-stat 25.772% 38.053% 26.668* 20.099% 26.133%
AIC 4.962282 4.962299 4.961953 4.962251 4.962428
SIC 4.967185 4.965977 4.966857 4.968381 4.967332
ARMA(2,2) | ARMA(2,3) | ARMA(3,1) | ARMA(3,2) | ARMA(3,3)
a, 0.154* 0.167* 0.154%* 0.154* 0.155%
@, -0.634* 0.271 -0.571%* -0.939% 0.045
@, -0.285%* 0.716* 0.085** -0.745% 0.096
@, -0.017 0.077* 0.499%
0, 0.750% -0.152 0.689** 1.060* 0.065
0, 0.363* -0.727* 0.868* -0.089
0, -0.103* -0.526%*
F-stat 20.400%* 16.582* 19.939% 18.608* 15.266*
AIC 4.962210 4.962338 4.962729 4.960662 4.961295
SIC 4.968341 4.969695 4.968861 4.968020 4.969879

ARMA models are combinations of Auto-Regressive and moving average models, so it
may be helpful to examine each of these data given at Table 4'°. Through an iteration
process, we have found that ARMA (3,2) model is the best fitting model for forecasting
the IMKB-100 returns. AIC criterion also shows us that ARMA(3,2) model fits the data

10 Although we have tested up to 20 lags, we present only 3 lags.
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quite well. We present in Table 4 the limited test results and estimated parameters of

each ARMA model.

Table 5 Corelogram of residuals and squared residuals of ARMA (3,2) Model
Sample: 5 5377

Included observations: 5373
Q-statistic probabilities adjusted for 5 ARMA termis)

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
1 -0.001 -0.001 0.0041
2 0009 0009 04254
3 0009 0009 09071
4 0015 0015 21813
5 -0.004 -0.004 22827
6 -0.008 -0.008 26187 0106
¥ -0.006 -0.0068 27893 0248
8 0030 00320 7F.7620 0.051
9 0024 0025 10890 0.028
10 0,031 003171 16129 0006
11 0012 0011 16883 0.010
12 0011 0009 A17.580 0.014
132 0,004 0003 117.662 0.024
14 00032 0002 17696 0039
15 0019 0019 19601 0.033
16 -0.007 -0.007 19876 0.047
17 0000 -0.007 19876 0.069
18 -0.001 -0.004 19882 0.098
19 0014 0012 20970 0102
20 -0.008 -0.010 21.357 0126
Sample: 5 5377
Included observations: 5373
Q-statistic probabilities adjusted for 5 ARMA termis)
Autocorrelation Partial Correlation A PAC Q-Stat Prob
| m— | m— 1 0280 0.280 420.50
| | i— 2 0252 0188 7T61.95
| | 18] 3 0175 0074 927.549
] li] 4 0134 0038 10249
|| |m] 5 0175 0102 1189.0
] 1 & 0125 0030 12728 0.000
|m] i ¥ 0087 -0.008 131328 0.000
|m] ! g2 0108 0044 13770 0.000
g 1l 9 0072 0.004 14050 0000
] g 10 0125 0.0688 14894 0.000
] ] 11 0123 0053 1571.3 0.000
A Il 12 00892 0008 1616.6 0.000
A Il 13 0.086 0007 16565 0.000
A ] 14 0084 0023 16948 0000
|m] 1 15 0087 0020 17351 0.000
] ! 16 0116 0.049 1207.1 0.000
g ! 17 0066 -0.011 183206 0.000
g 1l 18 0.0689 0.004 1856.6 0.000
g 1 19 0068 0013 1881.2 0.000
g 1 20 0079 0027 19148 0.000
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HISTOGRAM OF ARMA(3,2) RESIDUALS

1,000
— Series: Residuals
=l Sample 5 5377
800 - Observations 5373
| Mean 9.00e-06
600 _| Median -0.060082
Maximum 18.46121
Minimum -19.75400
400 | Std. Dev. 2.887436
Skewness -0.032594
Kurtosis 5.950726
200
Jarque-Bera 1950.183
Probability 0.000000
0 =g LN L L R S R R EL R
-20 -15 -10 -5 [} 5 10 15

The adjusted R? value of this magnitude is statistically significant (implies good fit
between actual data and model-estimated data) and absolute AIC value is higher
according to the others. DW value, which is near 2 indicates that there is no significant
autocorrelation in the residuals. But the LM test, computed for homoscedasticity of the
residual variances, reveals statistically significant heteroscedasticity. It indicates that our
model is a good fit with the data and the assumption of no residual autocorrelation is
satisfied. On the other hand, homoscedasticity assumptions were not valid for our model.
This means using heteroscedastic models like ARCH-GARCH will be more appropriate for
modeling the IMKB-100 Index’s returns and our model is not statistically reliable for the
long run forecasts.

An ARMA model for observed time series is necessary to remove any serial correlations
within the data. Above, the steps to obtain the ARMA model for IMKB-100 Index are
shown clearly. From the observations made in previous step, for Istanbul Stock Index,
the analysis conducted by using ARMA(3,2) model as mean equation:

Tablo 6 ARCH-LM Test Statistics

Heteroskedasticity Test: ARCH

F-statistic 455.8219 Prob. F(1,5370) 0.0000

Obs*R-squared 420.3142 Prob. Chi-Square(1) 0.0000

After estimating the correct ARMA model, ARCH-LM test was applied to see whether
there exists any conditional heteroskedasticity (ARCH effect) within the models. From
Table 7, it can be seen that the F statistic for ISE-100 Index is significantly high
(according to 5% sig.) so that we rejected the null hypothesis that there exists no ARCH
effects within the models and went on selecting the appropriate ARCH type model. To
decide on the best fitting GARCH model, we used the Akaike’s Information Criterions
(AIC). We selected the model which has the lowest value of AIC and F-statistic with the
highest probability

We tested the data by using GARCH, TARCH, EGARCH and GARCH-M models. We tried to
find out which model was the best for ISE-100 Index. We collected all the AIC values and
LM-Test statistic values up to 5 lags for ISE-100. The results of estimation and statistical
verification of ARCH (7), GARCH(1,1), TARCH(1,1), GARCH-M (1,1) and EGARCH(1,1)
models are shown in Table 8. The results indicate that the GARCH components of the
variance are statistically significant in all five models.

For ISE-100 Index, we decided that the TGARCH(1,1) model is the best as it has both the
lowest AIC statistic and the highest probability to accept the null hypothesis that there is
no ARCH effect any more in the model. As shown in Table 8, the coefficient of y value is
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positive but it is relatively small and the probability is significant at 5% critical level. The
positive and significant y value shows us that leverage effect exists, bad news increases
volatility. When we sum up the arch (0.150) and GARCH values (0.802) we get 0.952,
which is very close to 1. That means, the shock is persistent (is dying off slowly). The
existence of a ‘leverage effect’ was confirmed in the case of TARCH model. But,
although non-zero value of a in E-GARCH equation indicates an asymmetric effect, the

positive u,_,/./h._, value doesn't indicate presence of a ‘leverage effect’.

It is found that for ISE-100 Index, the second best fitting model is GARCH-M (1,1) as
shown in Table 7. The total of the a; (0.171) and B; (0.804) is 0.971. The coefficient of
\/h_t term is 0.076, which is significant and positive. Therefore, the return is positively
related to its past volatility. Additionally, there is a trade-off between the return and the

risk. The higher risk the higher return since a rise in variance increases the mean of
return.

Tablo 7 ARCH-Type Model Results

MEAN EQUATION
ARCH(7) | GARCH( | GARCH- | 1oARCH | E-GARCH
1,1) M
Jhe 0.076
ao 0.154 0.158 -0.012 0.139 0.158
@, 0.825 0.902 -0.189 0.900 0.572
@, -0.052 -0.853 -0.954 -0.844 0.477
@, 0.018 0.108 0.115 0.110 -0.058
6, -0.705 -0.789 0.303 -0.785 -0.445
6, -0.038 0.764 0.989 0.754 -0.543
VARIANCE EQUATION
C 2.388* 0.272% 0.284% 0.291* | -0.00961
uf_y 0.198% 0.167* 0.171% 0.150%
uf_, 0.172%
uf_3 0.094*
ut, 0.053%
u? s 0.133*
uf_g 0.076*
uf_; 0.0253%
he_y 0.809% 0.804% 0.802*
u? *u,_; <0 0.045*
lue_1/\/het | 0.357%
lue—z/\/he—s | -0.343%
w1 /[ ey -0.031%
Uy /\[hes 0.033*
Inh,_, 1.826*
Inh,_, -0.827%
AIC 4.755763 | 4.709717 | 4.709461 | 4.709034 | 4.733354
SIC 4.772932 | 4.72198 | 4.722951 | 4.722524 | 4.749297
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ARCH LM Test

F-statistic 0.772 1.485 1.403 1.398 2.351
Prob. 0.56 0.19 0.21 0.22 0.12
Obs*R-squared 3.863 7.424 7.015 6.989 2.351
Prob. 0.56 0.19 0.21 0.22 0.12
Root Mean Squared Error 2.891503 | 2.890127 | 2.890007 | 2.890193 | 2.891688
Mean Absolute Error 2.106011 | 2.105741 | 2.104896 | 2.10561 | 2.106573
Mean Abs. Percentage Error | 126.8268 | 129.5082 | 125.2329 | 128.8367 | 126.8452

* denotes significance at 1 percent
** denotes significance at 5 percent

6. Conclusion

Modeling and forecasting stock price volatility has always been one of the important
issues of financial theory and practice. This paper has represented an example of risk
measurement that could be the input to a variety of stock returns. In this study, both
Box Jenkins (ARIMA) and ARCH-type volatility models (ARCH-GARCH-EGARCH-TARCH
and GARCH-M) are discussed under daily returns of Istanbul Stock Exchange 100 Index.

Asymmetric GARCH models and GARCH-M model are compared to the GARCH(1,1)
model, which has found as best fitting model for ISE in prior studies, and we have
rejected the common sense that none of the competing models are better than the
GARCH(1,1). We have found that TARCH (1,1) is the best fitting model for forecasting
the volatility of ISE-100 Index’s. Our findings are not surprisingly, because the
GARCH(1,1) model corresponds to a simple news impact curve, and a GARCH(1,1)
process cannot generate a leverage effect.

The results of our study are coherent to the facts which have been reported in Bollerslev
et al. (1994) and Pagan (1996). ISE-100 Index’s returns include; leptokurtosis, leverage
effects, volatility clustering (or pooling), volatility smile and long memory.

A large sum of the coefficients in the conditional variance equations implies that a large
positive or a large negative return in ISE-100 Index will lead future forecasts of the
variance to be high. Finally, for ISE-100, we can say that the leverage effect exists and
bad news increases volatility.
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