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Abstract: This study aims to examine the relations and associations between 

gender, epistemic curiosity (EC), self-regulated learning (SRL), and attitudes 

toward e-learning in higher education students. The participants were 2438 

(862 males, 1576 females) undergraduate students enrolled in a Turkish 

university. The regression analysis findings showed that although the effect 

size was low, attitudes towards e-learning can be predicted significantly by 

gender, EC, and SRL. Datasets are further analyzed using data mining. The 

findings of the association rule mining revealed that gender plays an 

influential role. Several association rules among EC, SRL, and attitudes 

towards e-learning were detected for female students.  The results provide 

recommendations about using data mining as a statistical method in 

educational and psychological research. 

1. INTRODUCTION 

With the increasing prevalence of Internet-based courses, attention has been placed on e-

learning in educational institutions due to its numerous benefits including the absence of 

physical and temporal limits, the ease of accessing the material, and the cost-effectiveness 

(Altun et al., 2021; Howland & Moore, 2002). Specifically, the constructivist approach has had 

an impact on e-learning which resulted in the design of “constructivist e-learning 

environments” (CEEs) such as WebQuests, online courses, courses with simulations via 

computer management games and simulations (Martens et al., 2007, p.82). More specifically, 

the CEEs are based on constructivist principles which aim to provide challenging, authentic, 

and meaningful context. In this way, the learners can become intrinsically motivated during 

their learning process (Bastiaens & Martens, 2000). 

As for the field of education, the e-learning environments accompanied by the widespread use 

and availability of computers and smartphones led to a shift in the process of teaching and 

learning (Erarslan & Topkaya, 2017). E-learning has started to offer platforms that are learner-

centered, convenient for the learners’ own pace of learning, motivating, and available in various 
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forms of sources to practice and interact with others through web-based tools (Mohammadi et 

al., 2011). Recent research indicated that the adoption of e-learning has been widely affected 

by student-related factors (Bhuasiri et al., 2012). Student attitudes toward e-learning have been 

crucial in various learning environments. As highlighted by Maio et al. (2018), strong attitudes 

can guide behavior and positive attitudes toward learning which contributes to the effective use 

of learning strategies. Therefore, possessing positive attitudes and behaviors regarding e-

learning has been considered crucial for the acceptance, easiness, usability, and adoption of 

online learning (Aixia & Wang, 2011; Martins & Kellermanns, 2004; Selim, 2007).  

The current COVID-19 pandemic led to a sudden shift to e-learning in higher education. This 

sudden transition to e-learning took place beyond the preferences of the students. To put it 

another way, with the emergency action plan put into effect by the universities, not only the 

students who deliberately and willingly preferred distance education, but all students had to 

take all their courses remotely. Under these conditions, it became more important to find out 

which variables affect students’ development of positive or negative attitudes towards e-

learning.  As Gunnarsson (2001) and Suanpang (2007) revealed in their studies, there is a 

significant relationship between the students’ attitudes and their learning achievement in an 

online course. 

1.1. Gender and Attitudes Towards E-Learning  

Gender is considered among the influential factors in students’ attitudes toward e-learning. 

Attitudes toward learning in technology-enhanced environments, such as e-learning, are closely 

related to how much people are engaged with technology. According to Colley and Comber 

(2003), males approach computers like toys. They tend to figure out how it works and try to 

master using them. On the other hand, females regard computers as tools rather than a puzzle 

to solve. Consistent with these views, several studies showed that men are more interested and 

more engaged in technology than women, as a result, they are more experienced in using 

computers (Chen, 1986; Gnambs, 2021; Heo & Toomey, 2020; Temple & Lips, 1989).  Due to 

this prior experience, males were more positive toward computers and computer-related tasks 

and jobs (Whitley, 1997), which may lead to more positive attitudes toward e-learning as found 

in several studies (Liaw & Huang, 2011; Ong & Lai, 2006; Wang et al., 2009).  

1.2. Self-Regulated Learning and Attitudes Towards E-Learning  

Effective learning requires students to self-regulate their motivation, cognition, and behavior 

(Zimmerman, 1989). Self-regulated learning (SLR) is defined as “the degree to which students 

are metacognitively, motivationally, and behaviorally active participants in their learning 

process” (Zimmerman, 2008, p.2). In other words, self-regulated learning involves high 

motivation and self-direction. According to Zimmerman (2000), self-regulated learning (SRL) 

comprises three cycles (1) forethought, (2) performance or volitional control, and (3) self-

reflection. The forethought phase includes two components namely, task analysis and 

motivational beliefs. In this stage, students are expected to create an effective learning plan by 

identifying their learning goals. These goals should be challenging but attainable, proximal, and 

hierarchically organized with larger overarching goals. Apart from setting goals, students 

should allocate the appropriate amount of time to complete the learning tasks which should be 

framed and reframed by the educators to serve basis for future planning. As for the performance 

phase, self-control and self-observation components are emphasized for students which are 

expected to use different strategies towards achieving their learning goals as well as to observe 

the effectiveness of these to complete their learning tasks. Educators can help students at this 

phase by teaching and modeling various strategies that can be used for completing a learning 

task. In this stage, educators should equip students with a variety of strategies they can use for 

completing a task. Finally, the self-reflection phase includes self-judgment and self-reaction 
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which requires students to self-reflect on their learning outcomes and experiences. This phrase 

highlights the importance of focusing on what students can learn from their experiences and 

improve it next time. Simply, self-regulation addresses the self-generated thoughts, feelings, 

and actions of students which helps them attain the pre-defined goals (Zimmerman, 1994) and 

aids with the achievement of students in their learning (McCoach, 2002). 

Recent research on SRL revealed that many factors are closely related to students’ self-

regulated learning. To illustrate, in a study conducted by Cazan (2012), self-regulation was 

found to have a positive relationship with academic adjustment. Similarly, Zimmerman and 

Kitsantas (2014) emphasized the predictive role of self-regulation in students’ grade point 

average (GPA) and their academic performance. All learning environments, online or not, 

require learners to attend class, learn the material, submit homework, and do group work (Paul 

& Jefferson, 2019). However, e-learning environments, unlike face-to-face learning 

environments, are learner-centered and require autonomy as they present many choices for the 

learners (Andrade & Bunker, 2011).  In addition, e-learning requires them to be digitally skillful 

to be able to find their way around the learning interface (Hillman et al., 1994). Thus, in e-

learning, the control of the process is mostly with the learner and requires the learner to manage 

his learning and to choose among different options to manage the process. Therefore, success 

in e-learning is closely related to the self-regulated learning levels experienced by learners 

(Nikolaki et al., 2017).  

1.3. Curiosity and E-learning Attitudes 

Apart from the importance of e-learning, the interest in curiosity has gained attention and 

highlighted the scientific interest in multiple disciplines (Dan et al., 2020). Different 

disciplinary approaches have proposed various models and reported different to measure 

curiosity. Initially, epistemic curiosity (EC) is defined as the motive to seek, obtain and make 

use of new knowledge (Berlyne, 1954; Litman, 2005; Loewenstein, 1994). To put it simply, it 

is a multifaceted construct consisting of distinctive yet highly correlated dimensions (Nakamura 

et al., 2021). Berlyne (1966) emphasized two dimensions of EC: diversive and specific. While 

diversive EC is motivated by feelings of boredom and desire to seek stimulation regardless of 

source or content and specific EC is motivated by curiosity and initiated a detailed investigation 

of novel stimuli to acquire new information (p.31). These two dimensions were found to be 

highly correlated by Litman and Spielberger (2003) who introduced another dimension, the 

feeling of deprivation. Additionally, Litman (2005) added two more dimensions to EC labeled 

as Interest-type (I-type) and Deprivation-type (D-type).  First, I-type EC is defined as “a desire 

for new information anticipated to increase pleasurable feelings of situational interest” whereas 

D-type EC is based on “a motive to reduce unpleasant experiences of feeling deprived of new 

knowledge” (Lauriola et al., 2015, p. 202). The two dimensions were investigated by 

distinguished scholars who explored their association with learning and school performance 

(Eren & Coskun, 2016), acquisition of knowledge (Rotgans & Schmidt, 2014), and self-

regulated behavior (Lauriola et al., 2015). Finally, research on individual differences in EC 

suggests that its I-type and D-type dimensions are related to the variety of underlying processes, 

information-seeking activities as well as self-directed learning goals (Lauriola et al., 2015). 

Among the predictors of these differences is the use of different regulations strategies by the 

learner during the learning process.  

Considering the current COVID-19 pandemic which led to a sudden shift to online learning, 

determining the impact of individual characteristics on students’ attitudes towards e-learning is 

an important research area for educational researchers. Gender, EC, and SRL may be influential 

factors in students’ attitudes toward e-learning. To this end, this study aims to find out the 

relations and associations among higher education students’ gender, SRL, EC, and attitudes 

towards e-learning. 
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2. METHOD 

2.1. Setting and Participants 

The data of the study were collected in the 2020-2021 Fall semester. The sample comprised 

2348 (862 males, 1576 females) undergraduate students enrolled in a foundation (non-profit, 

private) university in Turkey. The participants were studying in various disciplines such as 

Foreign Languages (N=506), Social Sciences (N=362), Medical Sciences (265), 

Communication (N=184), Architecture (N=175), Law (N=144), and Other (802) (see Table 1).  

Due to the COVID 19 pandemic, all students were taking all their courses online. For this study, 

they volunteered and filled in the online questionnaires. It was stated to all participants that the 

questionnaires were anonymous and that they could withdraw at any time. Informed consent 

was received with yes / no screen questions from all participants before filling out the online 

questionnaires. 

Table 1. Summary of participants’ gender, department, and EL, SL, E-Learn Scales Quarters*. 

Sex f % Department f % Quarter 
Scale 

EC (f) SL (f) E-Learn (f) 

Man 862 35% Foreign Languages 506 21% First 390 478 489 

Woman 1576 65% Social Sciences 362 15% Second 834 719 796   
 Medical Sciences 265 11% Third 778 792 691   
 Communication 184 8% Forth 436 449 462   
 Architecture 175 7% 

    

  
 Law 144 6% 

    

  
 (Other) 802 32% 

    

TOTAL 2438 100%  2438 100%  2438 2438 2438 

*Rounded to the nearest decimal. 

2.2. Data Collection Tools 

2.2.1. The curiosity and exploration inventory-ii 

For this study, the Turkish version (Acun et al., 2013) of The Curiosity and Exploration 

Inventory-II (Acun et al., 2013) developed by Kashdan (2009) was used to measure the 

epistemic curiosity levels of the students. The self-report scale consists of 10 items with two 

subscales. The two subscales are the stretching subscale, which is the motivation for seeking 

information and new experience, and the acceptance of uncertainty and embracing subscale, 

which reflects the desire to discover the new, uncertain, and unpredictable in daily life.  Students 

responded on a four-point frequency scale where 1=never and 4= always. Higher scores indicate 

higher epistemic curiosity. The validity and reliability of the original English version of the 

scale were tested with three different samples and alpha reliability coefficients were reported 

between .75 and .86 for these samples. The validity and reliability of the Turkish version were 

tested with two different samples and alpha reliability coefficients for these two samples were 

calculated as .81 and .82 (Acun et al., 2013). For the current study, the alpha reliability 

coefficient was calculated as .80. 

2.2.2. Self-regulation scale 

To measure the self-regulation of the students, the Turkish version (Duru et al., 2009) of the 

Self-Regulation Scale developed by Tuckman (2002) was used.  The scale consists of 9 items 

–e.g. “I seem to have enough time to complete my work” and “I organize my time”. Students 

responded on a four-point frequency scale where 1=never and 4= always. Higher scores indicate 

higher levels of self-regulation. The Alpha reliability coefficient for the original version was 
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.88 and for the Turkish version was.73. For the current study, the alpha reliability coefficient 

was calculated as.73. 

2.2.3. Attitudes toward the e-learning scale 

To measure students' attitudes towards online learning, the Attitude Scale Towards E-Learning 

Scale developed by Haznedar and Baran (2012) was used. The scale is a five-point Likert scale 

where 1= definitely disagree and 5= definitely agree. The scale consists of 20 items, e.g. “I like 

working at my own pace with e-learning” and “E-learning increases the productivity of the 

learner”. Higher scores indicate a positive attitude towards e-learning. The Alpha reliability 

coefficient of the scale was calculated as.93. For the current study, the alpha reliability 

coefficient was .97. 

2.3. Data Analysis  

The data in this study were analyzed in two steps.  In the first step, multiple regression analysis 

was carried out to examine whether gender, EC, and SRL predict attitudes towards e-learning. 

Before the analysis, the suitability of the dataset for the analysis was tested. There was linearity 

as assessed by partial regression plots and a plot of studentized residuals against the predicted 

values. There was the independence of residuals, as assessed by a Durbin-Watson statistic 

of.086. Homoscedasticity was assessed by visual inspection of a plot of studentized residuals 

versus unstandardized predicted values and confirmed. For multicollinearity, tolerance values 

were assessed. All the values were greater than 0.1. No evidence of multicollinearity was 

detected. There were no studentized deleted residuals greater than ±3 standard deviations, no 

leverage values greater than 0.2, and values for Cook's distance above 1. Investigation of the 

Q-Q Plot confirmed the normality of the data.  

In the second step, to further understand the relationships among the variables, the association 

rule mining was run. With the change in the type and amount of data, it was understood that it 

would not be possible to obtain meaningful information in the analysis of the available data 

with existing methods and technologies (Ayık et al., 2007). This limitation prompted 

researchers to study in-depth for new analysis methods. As a result of these studies, a new data 

analysis method, data mining has emerged, which enables the analysis of data from different 

angles and to summarize this data by converting it into useful information (Delavari et al., 2008; 

Narli et al., 2014). The researchers defined the data analysis method as the process of 

discovering meaningful information from data stacks using methodologies such as artificial 

intelligence, statistics, and machine learning (Tan et al., 2006; Aran et al., 2019). The purpose 

of data mining is to reveal the whole systematic relationships between variables that do not 

appear to be relational or are assumed to be unrelated (Luan, 2002). Data mining includes 

different analysis models within itself. Many studies have categorized these models in different 

classifications (Ayık et al., 2007; Baker & Yacef, 2009; Baradwaj & Pal, 2012; Delavari et al., 

2008; Luan, 2002; Narli et al., 2014).  The most general definition of the association rule is 

categorized in the descriptive model which tries to reveal which events can occur 

simultaneously by examining the relations of the variables in the dataset with each other. The 

analysis methods used in this study are described below. 

2.3.1. Association rules mining 

The association rule is aimed at examining the 𝑋 → 𝑌 events in the form of cause and effect 

with each other. Analysis of association rule is performed with sequential or parallel and 

scattered algorithms depending on the characteristics of the data set. Algorithms such as 

Apriori, STEM, and AIS are called sequential algorithms and are preferred in cases in which 

the analyzed data set can be counted (Garcia et al., 2010). Methods such as count distribution, 

parallel data mining, and common candidate partitioned database are parallel and distributed 

algorithms and are used for the analysis of large data sets (Agrawal & Srikant, 1994; Inokuchi, 



Akgun, Mede & Sarac

 

 570 

et al., 2000; Zaki et al., 1997). In case the data set has a categorical structure, the apriori 

algorithm, which is one of the sequential algorithms, is often preferred in the analysis for the 

association rule (Agrawal & Srikant, 1994). In the scope of this study, the apriori algorithm was 

used for the association rule. 

The Apriori Algorithm developed by Agrawal and Srikant (1994) is an algorithm that is 

generally used to determine product sales strategy, banking services, and social trends. Findings 

obtained with this algorithm are presented with support, confidence, lift, and coverage values 

(Zaki et al., 1997). The support value is the percentage equivalent of the data set of the rule 

obtained in the whole data set and is calculated with the following formula (Garcia et al., 2010; 

Merceron et al., 2010; Özçalıcı, 2017). 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =
𝑛(𝑋 ∪ 𝑌)

𝑁
 

In this formula 𝑛(𝑋 ∪ 𝑌) refers to all cases in which X and Y are present together and N refers 

to the number of all cases in the total data set. In other words, this value shows the ratio of 

events or clusters in which X takes place to all events or sets for X and Y, which are different 

from each other (Güngör et al., 2013). The percentage equivalent of how much of the cases in 

which the X of the examined situation includes Y is the confidence value and is calculated with 

the following formula. 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝑛(𝑋 ∪ 𝑌)

𝑛(𝑋)
 

In this formula, 𝑛(𝑋 ∪ 𝑌) corresponds to the number of cases in which both X and Y, while 

𝑛(𝑋) only corresponds to the number of cases in which X is presented. The confidence value 

can only be zero if and only if there is no case in 𝑛(𝑋 ∪ 𝑌) value, that is, X and Y together. 

Another important value obtained with the apriori algorithm is the lift value. The lift value, 

which expresses the rate of statistical realization of X and Y independently of each other, is 

calculated with the following formula.  

𝐿𝑖𝑓𝑡 (𝑋 → 𝑌) =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑋 → 𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑌)
 

Lift value, which can take a value between 0 and ∞ according to this formula, is a parameter 

that helps to interpret how often events occur (Brin et al., 1997). Another important parameter 

for the apriori algorithm is the coverage value. Coverage values are parameters that show how 

often the present rule can be applied and it is calculated by the following formula (Garcia et al, 

2010; Merceron et al., 2010). 

𝐶𝑜𝑣𝑒𝑟 = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) = 𝑃(𝑋) 

According to this formula, the coverage value of a situation is equal to the ratio of the cases in 

which X is located. Therefore, it takes a value between 0 and 1.  

For association rules mining, all the variables should be categorical. In this study all the 

variables, except gender, were continuous. Therefore, EC, SRL, and attitudes towards e-

learning variables were divided into 4 groups. For grouping, the students into curiosity, self-

regulation, and attitudes towards e-learning groupings, the visual binning procedure was 

employed using SPSS. Binning was performed by applying cut-points at the mean and ±1 

standard deviation. For each variable, four binned categories were established. (Q1 =  low , Q2 

=  moderately low, Q3 =  moderately high, Q4 =  high). 
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For regression we used IBM SPSS 25 and the association rules analyses were carried out using 

R Studio 1.3.1093 with R version 4.0.3 rules package. For the visualization of findings, we used 

diagrams.net 14.1.8.  

3. RESULT 

As previously stated, in the present study we proposed a possible relationship between gender, 

EC and SRL, and attitudes towards e-learning. The following section examines and reports the 

obtained results in detail. 

3.1. Regression Analysis 

To predict attitudes towards online learning from gender, EC, and SRL, a multiple regression 

analysis was run (see Table 2). Based on the results of regression analysis gender, EC and SRL 

statistically significantly predicted attitudes towards online learning, F(3, 2447) = 44.570, p < 

.001. All four variables added statistically significantly to the prediction, p < .05. R2 for the 

overall model was 5% with an adjusted R2 of 5%. However, the effect size was small according 

to Cohen (1988).  

Table 2. Multiple regression results for attitudes towards online learning. 

Online Learning Attitude B 

95% CI for B 

SE B β R2 ΔR2 
Lower Bound Upper Bound 

Constant 15.292 8.31 22.27 3.559  .05 .05 

Gender 2.005 .172 3.84 .935 .043*   

Curiosity .348 .816 1.23 .090 .079**   

Self-Regulation 1.022 .172 3.84 .105 .198**   

Note: B= unstandardized regression coefficent; CI= confidence interval; SE B= standard error of the coefficient; β = 

standardized coefficient; R2 = coefficient of determination; ΔR2 = adjusted R2. 

*p< .05. **p<.01 

3.2. Association Rules Mining 

To gain an in-depth analysis of the obtained data, data mining was further employed. We used 

the association rule mining technique. Association rule mining is generally defined as the 

process of exploring meaningful knowledge within data sets by making use of such 

methodology as artificial intelligence, statistics, and machine learning (Tan et al., 2006). To put 

it simply, association rule data mining (descriptive category) was applied by searching data for 

frequent if-then patterns and identifying the most important relationships. The following section 

of this study summarizes the results.  

While establishing the association rule, the minimum support value was determined as 0.01 and 

the confidence value as 0.8. A total of 29 rules were reached that provide these values. The 

summary information on rule length distribution, support, confidence, coverage, lift, and 

frequency values regarding all rules were given in Table 3. 
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Table 3. Summary of quality measures of association rules*. 

 
Rule length distribution 

(lhs + rhs) 
Support (%) Confidence (%) Coverage (%) Lift Count (f) 

Minimum 3 0.01 0.8 0.01 1.23 26 

1st Quarter 3 0.01 0.82 0.01 1.26 29 

Median 3 0.01 0.86 0.02 1.33 35 

Mean    3.20 0.02 0.87 0.02 1.35 40 

3rd Quarter 3 0.02 0.91 0.02 1.4 47 

Maximum 4 0.04 1 0.04 1.54 86 

*Rounded to the nearest decimal. 

When the distribution of the found rules was examined, it was seen that the minimum rule 

length (lhs + rhs) was 3 (n = 33) and the maximum rule length was 4 (n = 18).  The minimum 

support and coverage value obtained was 0.01, and the highest was 0.04. It was found that the 

highest Conf value was obtained as 100%. The least repeating rule was n=26, while the most 

repeating rule was repeated n=86 times. Lastly, the average lift value was found to be 1.36 

(min: 1.23, max: 1.50). 

The 29 rules within the scope of this research will be presented in two categories. 22 of the 

rules were composed of different rule sets, including department variables of students, and the 

remaining 7 rules were composed of only quarters in measurement tools. 

3.2.1. Department based findings 

A total of 3 rules were found for students who enrolled in EduIns. (n=80, 3,3%), (see Table 3) 

When these rules were examined, it was revealed that students with 3rdQ (supp: 0.02; conf: 

0.95; cov: 0.02; lift; 1.47; f: 39) on the E-Learn scale, 2ndQ (supp: 0.01; conf: 1; cov: 0.01; lift; 

1.54; f: 26) on the SRL scale, and 3rdQ (supp: 0.01; conf: 0.87; cov: 0.01; lift; 1.34; f: 27) on 

the EC scale were female (see Table 4).   

Table 4. Association rules and their support, confidence, coverage, and lift values*. 

Rule 
Mathematical Rule 

lhs → rhs 

Support 

(%) 

Confidence 

(%) 

Coverage 

(%) 
Lift 

Count 

(f) 

[R1] (Dep=EduIns)  ( E-Learn=3rdQ) 

→ (Sex=F) 

0.02 0.95 0.02 1.47 39 

[R2] (Dep=EduIns)  ( SRL=2ndQ) 

→(Sex=F) 

0.01 100 0.01 1.54 26 

[R3] (Dep=EduIns)  ( EC=3rdQ) 

→(Sex=F) 

0.01 0.87 0.01 1.34 27 

*F: Female, Dep: Department, Q: Quarter 

In EduFa (n=122, 5%), it was understood that female participants were in the 2nd and 3rd 

quarters [R4…R9] in all E-Learn, SRL, and EC scales (see Table 5). In other words, in one or 

more of these scales, no pattern was found for education faculty students who were in the 1st 

and 4th quarters.   
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Table 5. Association rules and their support, confidence, coverage, and lift values*. 

Rule 
Mathematical Rule 

lhs → rhs 

Support 

(%) 

Confidence 

(%) 

Coverage 

(%) 
Lift 

Count 

(f) 

[R4] (Dep=EduFa)  ( E-Learn=3rdQ) →(Sex=F) 0.01 0.92 0.02 1.42 35 

[R5] (Dep=EduFa)  ( SRL=2ndQ) →(Sex=F) 0.01 0.82 0.02 1.26 36 

[R6] (Dep=EduFa)  ( EC=3rdQ) 

→(Sex=F) 

0.01 0.83 0.01 1.28 29 

[R7] (Dep=EduFa)  ( SRL=3rdQ) →(Sex=F) 0.01 0.88 0.02 1.35 35 

[R8] (Dep=EduFa)  ( E-Learn=2ndQ) →(Sex=F) 0.01 0.85 0.02 1.31 34 

[R9] (Dep=EduFa)  ( EC=2ndQ) →(Sex=WF 0.02 0.90 0.02 1.38 43 

*F: Female, Dep: Department, Q: Quarter 

A total of 7 rules for MedVoc (n=144, 5.9%) and MedSci (n=265, 10.8%) were obtained (see 

Table 5). MedVoc students, those in the 2nd [R10] and 4th [R11] quarters in SRL, and those in 

the 2nd [R12] quarter in EC were identified as female.  

Table 6. Association rules and their support, confidence, coverage, and lift values*. 

Rule 
Mathematical Rule 

lhs → rhs 

Support 

(%) 

Confidence 

(%) 

Coverage 

(%) 
Lift Count (f) 

[R10] (Dep=MedVoc)  ( SRL=2thQ) 

→(Sex=F) 

0.01 0.82 0.01 1.26 27 

[R11] (Dep=MedVoc)  ( SRL=4ndQ) 

→(Sex=F) 

0.01 0.90 0.01 1.39 27 

[R12] (Dep=MedVoc)  ( EC=2ndQ) 

→(Sex=F) 

0.02 0.86 0.02 1.33 50 

[R13] (Dep=MedSci)  ( SRL=3rdQ) 

 ( E-Learn=1stQ) →(Sex=F) 

0.01 0.91 0.01 1.4 30 

[R14] (Dep=MedSci)  ( EC=2ndQ) 

 ( SRL=2ndQ) →(Sex=F) 

0.01 100 0.01 1.54 29 

[R15] (Dep=MedSci)  ( EC=2ndQ) 

 ( SRL=3rdQ) →(Sex=F) 

0.01 0.97 0.01 1.5 32 

[R16] (Dep=MedSci)  ( EC=2ndQ) 

 ( E-Learn=2ndQ) →(Sex=F) 

0.01 0.95 0.02 1.46 36 

*F: Female, Dep: Department, Q: Quarter 

Furthermore, as shown in the Table 6 above, For MedSci students, those in SRL 3rdQ and E-

Learn 1stQ (supp: 0.01; conf: 0.91; cov: 0.01; lift; 1.4; f: 30) were determined to be women, and 

along with that, both EC 2nd and;  [R14] those in SRL 2nd (supp: 0.01; conf: 1; cov: 0.01; lift; 

1.54; f: 29) quarter, [R15] those in SL 3rd (supp: 0.01; conf: 0.97; cov: 0.01; lift; 1.5; f: 32) 

quarter or, [R16] those in E-Learn 2nd (supp: 0.01; conf: 0.95; cov: 0.02; lift; 1.46; f: 36) quarter 

were obtained as the pattern of female students.  

The last section of the department-based rules consists of 6 rules involving Arch students. The 

findings revealed that the participants from Arch in E-Learn 1st [R18] and 3rd [R19] quarter, in 

1st [R17] and 2nd [R22] quarters in EC and SRL 2nd [R20] and 3rd [R21] were female students 

(see Table 7).  

 

 



Akgun, Mede & Sarac

 

 574 

Table 7. Association rules and their support, confidence, coverage, and lift values*. 

Rule 
Mathematical Rule 

lhs → rhs 

Support 

(%) 

Confidence 

(%) 

Coverage 

(%) 
Lift 

Count 

(f) 

[R17] (Dep=Arch)  ( EC=1stQ) 

→(Sex=F) 

0.01 0.91 0.01 1.4 29 

[R18] (Dep=Arch)  ( E-Learn=1stQ) →(Sex=F) 0.02 0.81 0.02 1.25 47 

[R19] (Dep=Arch)  ( E-Learn=3rdQ) →(Sex=F) 0.01 0.83 0.02 1.28 34 

[R20] (Dep=Arch)  ( SRL=2ndQ) →(Sex=F) 0.02 0.81 0.02 1.25 43 

[R21] (Dep=Arch)  ( SRL=3rdQ) →(Sex=F) 0.02 0.81 0.03 1.25 50 

[R22] (Dep=Arch)  ( EC=2ndQ) 

→(Sex=F) 

0.02 0.81 0.02 1.25 48  

*F: Female, Dep: Department, Q: Quarter 

Finally, based on the gathered data all department-based rules were given in Figure 1. When all 

these rules were examined, it was understood that there was a pattern in the data of EduIns, 

EduFa, MedVoc, MedSci, and Arch departments in this data set, which includes participants 

from 17 different departments. Therewithal, no pattern was obtained for male participants even 

though there were both female and male participants. The most unusual finding regarding the 

department-based rules was that the predictor variable of all rules points to female participants. 

In other words, the main element of the pattern created in all rules was the gender variable of 

the female participants.  

Figure 1. Departmental rules. 
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3.2.2. Scales based findings 

All rules based on scales were given in the Table 8. When all these rules were examined, it was 

concluded that those with EC 1stQ and also those in [R23] SL 4th quarter (supp: 0.02; conf: 

0,93; cov: 0.02; lift; 1.44; f: 54), [R24] E-learn 3rdQ (supp: 0.03; conf: 0.80; cov: 0.04; lift; 

1.23; f: 76), [R24] SRL 3rdQ (supp: 0.04; conf: 0.84; cov: 0.04; lift; 1.3; f: 86) were female.  

Table 8. Association rules and their support, confidence, coverage, and lift values*. 

Rule 
Mathematical Rule 

lhs → rhs 

Support 

(%) 

Confidence 

(%) 

Coverage 

(%) 
Lift 

Count 

(f) 

[R23] (EC=1stQ)  ( SRL=4thQ) 

→(Sex=F) 

0.02 0.93 0.02 1.44 54 

[R24] (EC=1stQ)  ( E-Learn=3rdQ) →(Sex=F) 0.03 0.80 0.04 1.23 76 

[R25] (EC=1stQ)  ( SRL=3rdQ) 

→(Sex=F) 

0.04 0.84 0.04 1.3 86 

[R26] (EC=1stQ)  ( SRL=2ndQ) 

 ( E-Learn=2ndQ) →(Sex=F) 

0.01 0.81 0.01 1.26 29 

[R27] (EC=2ndQ)  ( SRL=4thQ) 

 ( E-Learn=2ndQ) →(Sex=F) 

0.01 0.87 0.01 1.34 26 

[R28] (EC=2ndQ)  ( SRL=3rdQ) 

 ( E-Learn=1stQ) →(Sex=F) 

0.01 0.81 0.02 1.25 34 

[R29] (EC=2ndQ)  ( SRL=3rdQ) 

 ( E-Learn=2ndQ) →(Sex=F) 

0.03 0.85 0.04 1.31 74 

*F: Female, Dep: Department, Q: Quarter 

The remaining 4 rules on scale-based were 4 rule lengths. Accordingly, all participants who 

fulfilled the requirements [R26] (EC=1stQ)  (SRL=2ndQ)  (E-Learn=2ndQ) and [R27] 

(EC=2ndQ)  (SRL=4thQ)  (E-Learn=2ndQ) were women. Finally, along with EC 2ndQ and 

SRL 3rdQ, all participants in E-Learn, both from 1stQ and 2ndQ were also stated as women. 

All scale-based rules were given in Figure 2 below.  

Figure 2. Scale based rules. 
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4. DISCUSSION and CONCLUSION 

As previously stated, in the present study we proposed that individual differences might be an 

active and influential on higher education students’ attitudes toward e-learning. The statistical 

analysis of multiple regression revealed that gender, EC and SRL were significant predictors of 

attitudes towards e-learning. However, the effect size was low. So, to further analyze the 

relations among the variables, we conducted association rule mining. As expected, we could 

detect several associations among variables that cannot be detected via regression models. 

According to the association rule in the descriptive model category, gender was found to have 

a predictive role in the two behaviors. Specifically, females outperformed males both in SRL 

and EC during online learning. These findings were contrary to previous studies that revealed 

no significant gender differences with respect to SRL (Çalışkan & Sezgin-Selcuk, 2010; 

Hargittai & Shafer, 2006; Yükseltürk & Bulut, 2009). Besides, the findings were opposite to 

the study conducted by Bashir and Bashir (2016) indicating that males showed higher self-

regulation as compared to females. The only partial similarity was reported by Senler and 

Sungur-Vural (2012) stating that females showed higher self-regulation and effort regulation 

compared with males.  

Considering the statistical analysis methods used in the study, it is important to evaluate the 

findings revealed by data mining.  The association rule used in this study, although it is less 

used in educational sciences, has wide usage in several areas as Computer Science (Chen et al. 

2021), Engineering (Çakır et al., 2021), Decision Sciences (Prathama et al.2021), Mathematics 

(Li et al., 2020) Business, Management and Accounting (Moodley et al., 2020), Medicine and 

Dentistry (Tandan et al., 2021), Social Sciences (Cömert & Akgün, 2021), Energy (Odabaşı & 

Yıldırım, 2019), Environmental Science (Nagata et al., 2014) and Psychology (Elia et al., 2019). 

Besides, in order to compare the performance of this analysis method, which includes more 

than one algorithm, many variables such as the distribution, features, and characteristics of the 

data set should be considered. Therefore, it can be said that which algorithm gives better 

performance from association rules varies according to the properties of the dataset (Borgelt & 

Kruse, 2002). With data mining techniques in which appropriate algorithms are selected, it 

seems possible to reveal detailed characteristic relationships about students and to make 

predictions for the future (Arora & Badal, 2014). 

Based on these overviews, the present study revealed that gender might have a predictive role 

on SRL and EC among higher education students during e-learning which should be addressed 

in further studies. Similar to face-to-face education, individual differences have an active and 

influential role in teaching and learning online as well. Therefore, we propose that future 

research should examine the role of such personal characteristics in various educational 

contexts to provide suggestions for more effective pedagogical practices. To gather in-depth 

information, we also recommend that data mining can be used as a statistical method in 

educational and psychological research. 
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