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Abstract: One of the new suggested prediction methods is the Kibria-Lukman’s prediction approach

under multicollinearity in linear mixed models and in this article, the generalized Kibria-Lukman estimator

and predictor are introduced to combat multicollinearity problem. The comparisons between the proposed

generalized Kibria-Lukman estimator/predictor and several other estimators/predictors, namely the best

linear unbiased estimator/predictor and Kibria-Lukman estimator/predictor are done by using the matrix

mean square error criterion. Lastly, the selection of the biasing parameter is given and to demonstrate the

performance of our new defined prediction method, the greenhouse gases data analysis is made.

Keywords: Linear mixed model, mean square error, generalized Kibria-Lukman predictor, multicollinear-

ity.

1. Introduction

The linear mixed model (LMM) is described the following form for i = 1, . . . ,m ,

yi =Xiβ +Ziui + εi,

where yi is an ni × 1 vector of response variables measured on subject i , β is a p × 1 parameter

vector of fixed effects, Xi and Zi are ni × p and ni × q known design matrices of the fixed and

random effects, respectively, ui is a q × 1 random vector, the components of which are called

random effects and εi is an ni × 1 random vector of errors. LMM mostly has the assumptions

given below

ui
iid∼ Nq (0, σ2F) and εi

iid∼ Nni
(0, σ2Wi) , i = 1, . . . ,m,

where ui and εi are independent, F and Wi are q × q and ni × ni known positive definite (pd)

matrices.
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y = (yT1 , . . . , yTm)T , X = (XT
1 , . . . ,X

T
m)T , Z = ⊕m

i=1Zi (⊕ is the direct sum), u = (uT
1 , . . . , u

T
m)T

and ε = (εT1 , . . . , εTm)T is taken. So, the more compact model can be written as

y =Xβ +Zu + ε, (1)

this means (u
ε
) ∼ Nqm+n ((

0qm
0n
) ,(σ

2G 0
0 σ2W

)) , where n =
m

∑
i=1

ni , G = Im ⊗ F , W = ⊕m
i=1Wi (⊗

is the Kronecker product) and Im is the identity matrix of order m . y ∼ N (Xβ,σ2H) is written

under model (1), where H = ZGZT +W . It is assumed that the G and W matrices are known

for ease of theoretical calculations. But, if this assumption is not satisfied, we substitute their

maximum likelihood (ML) or restricted maximum likelihood (REML) estimates for the G and W .

β̂ and û were obtained by [4, 5] as follows

β̂ = (XTH−1X)−1XTH−1y,

û = GZTH−1(y −Xβ̂), (2)

and they were, respectively, named as BLUE (the best linear unbiased estimator of β ) and BLUP

(the best linear unbiased predictor of u).

This article aims to reveal a new prediction method, which is an alternative to the existing

estimators/predictors defined below in the LMM literature under multicollinearity and, for the sake

of actualizing this aim, is to introduce a generalized form of Kibria-Lukman prediction method in

LMMs by following [1] generalized Kibria-Lukman estimator in linear regression models. Thus, the

rest of our study is configured as follows: We give our preliminaries in Section 2. We obtain the

generalized Kibria-Lukman estimator and predictor in LMMs via [1] in linear regression models in

Section 3. Matrix mean square error (MMSE) performances are evaluated in Section 4. We mention

about biasing parameter selection in Section 5 and in Section 6, greenhouse gases data analysis is

ensured to show our theoretical findings. Finally, in Section 7, we discuss some conclusions.

2. Preliminaries
Multicollinearity is defined as the linear dependence between the columns of X . The statistical

consequences of this effect, such as the parameter estimates having large variances and being

different from the true values, are well known in all linear regression models, including LMM.

In order to eliminate the effects of this effect, there are many methods defined in both linear

regression models and LMM, and ridge regression in the linear regression models recommended

by [6] is the most well-known method among these methods. Under LMM, [11, 13] identified the

26



Özge Kuran / FCMS

ridge estimator and predictor with k > 0 ridge biasing parameter as follows

β̂k = (XTH−1X + kIp)−1XTH−1y,

ûk = GZTH−1(y −Xβ̂k). (3)

In addition to ridge regression, [7, 10] suggested Liu’s approach in linear regression models.

By following [14, 15, 20] proposed the Liu estimator predictor via 0 < d < 1 Liu biasing parameter

under LMM as follows

β̂d = (XTH−1X + Ip)−1(XTH−1y + dβ̂),

ûd = GZTH−1(y −Xβ̂d), (4)

where β̂ is the BLUE in Equation (2).

In linear regression models, [9] proposed a new one-parameter estimator in the class of ridge

and Liu estimators and they called their new estimator as the Kibria-Lukman (KL) estimator. By

following [9] in linear regression models, [12] suggested respectively the KL estimator and the KL

predictor in LMMs as

β̂KL = (XTH−1X + kIp)−1(XTH−1y − kβ̂) = (XTH−1X + kIp)−1(XTH−1X − kIp)β̂

= (Ip + k(XTH−1X)−1)−1(Ip − k(XTH−1X)−1)β̂,

ûKL = GZTH−1(y −Xβ̂KL). (5)

Now, we will introduce a new prediction approximation as an alternative to the estimators/predictors

defined above under multicollinearity.

3. Introduced New Prediction Approximation

Via [1] in linear regression models, a new prediction approximation is handled in LMMs in this

part. With model (1) assumptions, we have

(u
y
) ∼ N (( 0

Xβ
) , σ2 ( G GZT

ZG H
)) , y∣u ∼ N (Xβ +Zu,σ2W) ,

[5] maximize

f (y, u) = f (y∣u)f (u)

= (2πσ2)−(n+qm)/2 ∣W ∣−1/2 ∣G∣−1/2

× exp{− 1

2σ2
[(y −Xβ −Zu)T W −1 (y −Xβ −Zu) + uTG−1u]},
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where ∣.∣ is a matrix determinant and thus, log f (y, u) is obtained

log f (y, u) = log f (y∣u) + log f (u)

= −1
2
{(n + qm) log (2π) + (n + qm) logσ2 + log ∣W ∣ + log ∣G∣

+[(y −Xβ −Zu)T W −1 (y −Xβ −Zu) + uTG−1u]/σ2}.

Our goal is to describe a new prediction method which is resistant to multicollinearity alternative

to ridge, Liu and KL prediction approaches in LMMs. Via [1], log f (y, u) is minimized under

(β + β̂)T (β + β̂) = c with δ = 1
2σ2 ≥ 0 regularization parameter

log f (y, u) − 1

2σ2
K[(β + β̂)T (β + β̂) − c], (6)

where K = diag(k1, . . . , kp) for 0 < ki < 1 , i = 1, . . . , p , as the ridge biasing parameters and c is

a constant. Substituting the log function into Equation (6) and removing the constant term from

the model,

− 1

2σ2
{(y −Xβ)T W −1 (y −Xβ) +K[(β + β̂)T (β + β̂) − c]}

− 1

2σ2
{uT (ZTW −1Z +G−1)u − 2 (y −Xβ)T W −1Zu}, (7)

is written. Initially, we get partial derivatives of Equation (7) corresponding to β and u . Later,

we equalize these derivatives to zero. Thus, we derive the following equations

XTW −1(y −Xβ̂GKL) −Kβ̂ −Kβ̂GKL −XTW −1ZûGKL = 0, (8)

ZTW −1(y −Xβ̂GKL) − (ZTW −1Z +G−1)ûGKL = 0 (9)

and we name as β̂GKL and ûGKL , respectively, as the generalized KL (GKL) estimator and

predictor, respectively.

We present Equations (8) and (9) as

(X
TW −1X +K XTW −1Z
ZTW −1X ZTW −1Z +G−1)(

β̂GKL

ûGKL
) = (X

TW −1y −Kβ̂
ZTW −1y

) . (10)

We write Equation (10) via [3] as follows:

CΨ̂ = ωTW −1y + κ, (11)
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where Ψ̂ = (β̂T
GKL, û

T
GKL)T , ω = (X,Z) , κ = (−Kβ̂T ,0T )T and C = ωTW −1ω+Ģ+ is full rank with

the Moore-Penrose inverse ‘+ ’

Ģ = (
Ip
K

0
0 G

) and Ģ+ = (K 0
0 G−1

) .

After Equation (11) is found, we obtain

Ψ̂ = C−1ωTW −1y +C−1κ, (12)

where C−1 is calculated from the inverse partitioned matrix [18] as

C−1 =
⎛
⎝

Ń −ŃXTH−1ZG

−GZTH−1XŃ Υ +GZTH−1XŃXTH−1ZG

⎞
⎠
,

where Ń = (XTH−1X +K)−1 and Υ = (ZTW −1Z +G−1)−1 . Then, after C−1 puts in Equation

(12), the GKL estimator and the GKL predictor are derived, respectively, as

β̂GKL = (XTH−1X +K)−1(XTH−1y −Kβ̂) = (XTH−1X +K)−1(XTH−1X −K)β̂

= (Ip +K(XTH−1X)−1)−1(Ip −K(XTH−1X)−1)β̂, (13)

ûGKL = GZTH−1(y −Xβ̂GKL). (14)

4. Mean Square Error Performances

Prediction of linear combinations of β and u is explained as µ = LTβ+MTu for specific L ∈ Rp×1

and M ∈ Rq×1 matrices (see [16, 17, 21]). With the help of [19], the MMSEs for µ̂ , µ̂KL and

µ̂GKL are written as

MMSE(µ̂) = QMMSE(β̂)QT + σ2MT (G −GZTH−1ZG)M, (15)

MMSE(µ̂KL) = QMMSE(β̂KL)QT + σ2MT (G −GZTH−1ZG)M, (16)

MMSE(µ̂GKL) = QMMSE(β̂GKL)QT + σ2MT (G −GZTH−1ZG)M, (17)
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where µ̂ = LT β̂ +MT û = Qβ̂ +MTGZTH−1y , µ̂KL = LT β̂KL +MT ûKL = Qβ̂KL +MTGZTH−1y ,

µ̂GKL = LT β̂GKL +MT ûGKL = Qβ̂GKL +MTGZTH−1y , Q = LT −MTGZTH−1X ,

MMSE(β̂) = σ2(XTH−1X)−1, (18)

MMSE(β̂KL) = σ2(Ip + k(XTH−1X)−1)−1(Ip − k(XTH−1X)−1)(XTH−1X)−1

×(Ip − k(XTH−1X)−1)(Ip + k(XTH−1X)−1)−1

+[(Ip + k(XTH−1X)−1)−1(Ip − k(XTH−1X)−1) − Ip]

×ββT [(Ip + k(XTH−1X)−1)−1(Ip − k(XTH−1X)−1) − Ip]T , (19)

MMSE(β̂GKL) = σ2(Ip +K(XTH−1X)−1)−1(Ip −K(XTH−1X)−1)(XTH−1X)−1

×(Ip −K(XTH−1X)−1)(Ip +K(XTH−1X)−1)−1

+[(Ip +K(XTH−1X)−1)−1(Ip −K(XTH−1X)−1) − Ip]

×ββT [(Ip +K(XTH−1X)−1)−1(Ip −K(XTH−1X)−1) − Ip]T . (20)

When we examine Equations (15), (16) and (17), it can be said that the superiority

of MMSE(µ̂GKL) over MMSE(µ̂) and MMSE(µ̂KL) is equivalent to the superiority of

MMSE(β̂GKL) over MMSE(β̂) and MMSE(β̂KL) derived by, respectively, Equations (18),

(19) and (20). Then, via orthogonal transformation, our model (1) is transformed to a canonical

form. Because H is pd, there exists a nonsingular symmetric matrix N such that H = NTN . Our

new model is

y∗ =X∗β +Z∗u + ε∗, (21)

with y∗ = N−1y , X∗ = N−1X , Z∗ = N−1Z , ε∗ = N−1ε and V ar(y∗) = σ2I is derived.

The spectral decomposition of the matrix XTH−1X is PTΛP with Λ = diag(λi) the p × p

orthogonal matrix of the eigenvalues of XTH−1X (λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0) and P = [P1 . . . Pp] the

p × p orthogonal matrix of the standardized eigenvectors corresponding to the eigenvalues. Then,

the model (21) can be written as y∗ = K∗α + Z∗u + ε∗ , where K∗ = X∗PT and α = Pβ . In the

transformed model, MMSE(α̃) = P [MMSE(β̃)]PT for any estimator α̃ is derived. Hence, we
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have the following MMSE formulas via Equations (18), (19) and (20)

MMSE(α̂) = σ2Λ−1, (22)

MMSE(α̂KL) = σ2(Ip + kΛ−1)−1(Ip − kΛ−1)Λ−1(Ip − kΛ−1)(Ip + kΛ−1)−1

+[(Ip + kΛ−1)−1(Ip − kΛ−1) − Ip]ααT [(Ip + kΛ−1)−1(Ip − kΛ−1) − Ip]T , (23)

MMSE(α̂GKL) = σ2(Ip +KΛ−1)−1(Ip −KΛ−1)Λ−1(Ip −KΛ−1)(Ip +KΛ−1)−1

+[(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]ααT [(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]T . (24)

We will define the two theorems given below, respectively, the GKL estimator vs the BLUE and

the GKL estimator vs the KL estimator.

Theorem 4.1 MMSE(α̂) −MMSE(α̂GKL) > 0 iff

αT [(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]T

×[σ2(Λ−1 − (Ip +KΛ−1)−1(Ip −KΛ−1)Λ−1(Ip −KΛ−1)(Ip +KΛ−1)−1)]

×[(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]α < 1.

Theorem 4.2 MMSE(α̂KL) −MMSE(α̂GKL) > 0 iff

αT [(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]T [Ω + [(Ip + kΛ−1)−1(Ip − kΛ−1) − Ip]

×ααT [(Ip + kΛ−1)−1(Ip − kΛ−1) − Ip]T ][(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]α < 1,

where

Ω = σ2((Ip + kΛ−1)−1(Ip − kΛ−1)Λ−1(Ip − kΛ−1)(Ip + kΛ−1)−1

−(Ip +KΛ−1)−1(Ip −KΛ−1)Λ−1(Ip −KΛ−1)(Ip +KΛ−1)−1).

[1] can be investigated for Theorems 4.1 and 4.2 proofs.

5. About Biasing Parameter Selection

Under our proposed new prediction approximation, an appropriate parameter k calculation is

important. For this purpose, differentiating Equation (24) corresponding to k and then, equating

to zero, we find

ki =
σ2

2α2
i + (σ2/λi)

, i = 1, . . . , p, (25)
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Since the optimal value of k in Equation (25) depends on the unknown parameters σ2 and

α2 , we replace with their unbiased estimate and so, we have

k̂i =
σ̂2

2α̂2
i + (σ̂2/λi)

, i = 1, . . . , p, (26)

and then, we introduce the minimum version of Equation (26) as

k̂min =min [ σ̂2

2α̂2
i + (σ̂2/λi)

] . (27)

6. Gases of Greenhouse Data Example

Greenhouse gases have increased greatly in the last 150 years and the most important reason for

this increase is human activities. The burning of fossil fuels for heat, transportation and electricity

is the largest cause of gas emissions from these human activities [2]. The transportation sector

receives the largest portion of greenhouse gas emissions from these three sectors in the United

States. In this data example, we employ data on 297 fuel combustion in transport from randomly

selected 27 areas for the years including 2006-2016 (see [2]). To identify fuel combustion in transport

(y ), repeated measurements are taken from the cars (x1 ), the light duty trucks (x2 ), the heavy

duty trucks-buses (x3 ), the motorcycles (x4 ) and railways (x5 ). The areas factor effect is random

effect. Thus, our model is yielded

yij = β1xij1 + β2xij2 + β3xij3 + β4xij4 + β5xij5 + u1 + u2tij + εij , i = 1, . . . , 27, j = 1, . . . , 11,

where yij shows the ith observation of the j th area of the response, xijs shows the ith observation

of the j th area of the explanatory variable xs , s = 1, . . . , 5 , tij denotes time corresponding to yij .

In this example, we benefit from Matlab R2014a. Initially, we think covariance structures given

below and then, for comparing these covariance models with ML and REML, we benefit from the

Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) (see Table 1).
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Table 1: Covariance structures 1

Cov. Struc. Est. Met. for
Cov. Par. AIC BIC

Unstructured (UN) ML
REML

337.30
362.03

374.24
398.76

Diagonal (UN(1)) ML
REML

339.42
362.87

372.67
395.93

Variance Components (VC) ML
REML

391.56
416.72

421.11
446.11

Compound Symmetry (CS) ML
REML

393.42
418.60

426.67
451.66

The best models for modeling covariance matrix structure by response variable, which are the

minimum values corresponding to AIC and BIC criteria, are the UN under AIC and UN(1) under

BIC. By following [8] and [13]’s ideas, we choose UN(1) under ML and ĜML = [
2.1913 0

0 0.0755
] ,

ŴML = 0.25451I297 are computed. Therefore, with H = ZGZT +W formula, ĤML is derived.

XT Ĥ−1MLX matrix eigenvalues are computed as (λ1 ,λ2 ,λ3 ,λ4 ,λ5 ) = ( 1.4326 × 10+7 ,1.5085 ×

10+4 ,4.7251 × 10+3 ,247.7243 ,41.5100) . Since condition number λmax/λmin = 345120 > 1000 is

obtained, one can say that severe multicollinearity is appeared.

To derive the GKL estimators/predictors, we get

K = diag(k̂i) = diag(1.03488,5.56847,6.80586,9.04688,0.10696), i = 1, . . . , p,

by using Equation (26) and to get the KL estimators/predictors, we use k̂ = k̂min = 0.10696 where

σ̂2 is computed as 5.17298 given by Equation (27). In Table 2, fixed/random effects parameter

estimates and scalar mean square error (SMSE) values are given. β̂GKL outperforms β̂ and β̂KL

in the sense of SMSE values under Table 2.

Table 2: Fixed/random effects parameter estimates and SMSE values

β1 β2 β3 β4 β5 SMSE u1 u2

β̂ 1.02474 1.05007 0.93304 3.34361 3.67898 0.14693 û 0.54883 −0.07806
β̂KL 1.02549 1.05044 0.93246 3.32847 3.65880 0.14599 ûKL 0.54997 −0.07823
β̂GKL 1.03151 1.06769 0.89854 2.17688 3.65997 0.05558 ûGKL 1.69062 −0.08354

Theorems 4.1 and 4.2 conditions are computed as, respectively, 0.01205 < 1 and 0.01186 < 1 ,

hence β̂GKL is also better than β̂ and β̂KL under the MMSE criterion.

Gases of greenhouse data example confirms that β̂GKL is superior than β̂ and β̂KL when

appropriate k values are employed.
1The abbreviations “ Cov. Struc.” and “ Est. Met. for Cov. Par.” refer to “ Covariance Structures” and “

Estimation Methods for Covariance Parameters”.
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7. Conclusion

The GKL prediction approach is extended to LMMs by using the method given in [1]. We also

perform MMSE comparisons then, we give biasing parameter selection. Eventually, we support

with our findings with gases of greenhouse data example.

This article presents that one can use the GKL estimator/predictor alternative to KL

estimator/predictor in an LMM when multicollinearity problem exists and additionally, this article

has affirmed that the GKL approach usage ensures a smaller MSE than the BLUE and KL estimator

for appropriate selected ridge biasing parameter.
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