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The objective of this paper is to obtain solution to unsteady fluid flow through porous 

horizontal channel with injection and suction velocities using SUM integral transform. 

The solution is represented in terms of extended special function that contained two Fox-

Wright functions in its kernel.  

 

1. Introduction 

Special functions are obtained as solution to differential equations, for example, the confluent hypergeometric 

equation is an important differential equation that arises in optics, electrodynamics, waves, diffusion, fluid flow, 

string theory, heat transfer, general relativity, graphic design, quantum mechanics and quantum physics, is given 

in [1] by   

   𝑧
𝑑2𝑢

𝑑𝑧2 + (𝑏 − 𝑧)
𝑑𝑢

𝑑𝑧
− 𝑎𝑢 = 0,            (1) 

with 𝑎 and 𝑏 as constants. The first and second standard solutions of equation (1) using Frobenius methods are 

given as, respectively:  

    𝑀(𝑎; 𝑏; 𝑧) = ∑
(𝑎)𝑟

(𝑏)𝑟

𝑧𝑟

𝑟!
∞
𝑟=0  ,        

and  

 𝑈(𝑎; 𝑏; 𝑧) =
Γ(1−𝑏)

Γ(1+𝑎−𝑏)
𝑀(𝑎; 𝑏; 𝑧) +

Γ(𝑏−1)

Γ(𝑎)
𝑧1−𝑏𝑀(1 + 𝑎 − 𝑏; 2 − 𝑏; 𝑧), 𝑏 ∉ ℤ.        (2) 

The solution in equation (2) has the following important relation [2, 3]: 

  𝑈(𝑎; 𝑏; 𝑧) = 𝑧1−𝑏𝑈(1 + 𝑎 − 𝑏; 2 − 𝑏; 𝑧),           (3) 

and  

  𝑈(𝑎; 𝑏; 𝑧) = 𝑧−𝑎 𝐹0(𝑎, 1 + 𝑎 − 𝑏; −; −𝑧−1),2            (4) 

where 𝐹0(𝑎, 𝑏; −; 𝑧)2  is a generalized hypergeometric function. 

Recent in 2023, the following generalized Gauss hypergeometric function defined using two Fox-Wright is 

presented in [3,4] as 

  𝐹𝑝,𝑞
𝜔,𝜛(𝑎, 𝑏; 𝑐; 𝑧)Ψ = 𝐹𝑝,𝑞

𝜔,𝜛Ψ [
(𝐵𝑖,𝑏𝑖)1,𝜇

(𝐷𝑗,𝑑𝑗)
1,𝜉

|
(𝐸𝑚,𝑒𝑚)1,𝜌

(𝐺𝑛,𝑔𝑛)1,𝜚
| 𝑎, 𝑏; 𝑐; 𝑧]  

        = ∑ (𝑎)𝑟
𝐵𝑝,𝑞

𝜔,𝜛(𝑐+𝑟,𝑐−𝑏)Ψ

𝐵(𝑐,𝑐−𝑏)

𝑧𝑟

𝑟!
∞
𝑟=0  ,          (5) 
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Where 𝑅𝑒(𝑐) > 𝑅𝑒(𝑏), |𝑧| < 1 and  

 𝐵𝑝,𝑞
𝜔,𝜛(𝑥, 𝑦)Ψ = 𝐵𝑝,𝑞

𝜔,𝜛Ψ [
(𝐵𝑖,𝑏𝑖)1,𝜇

(𝐷𝑗,𝑑𝑗)
1,𝜉

|
(𝐸𝑚,𝑒𝑚)1,𝜌

(𝐺𝑛,𝑔𝑛)1,𝜚
| 𝑥, 𝑦]     

 = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−11

0
Ψ𝜉𝜇 (−

𝑝

𝑡𝜔) Ψ𝜚𝜌 (−
𝑞

(1−𝑡)𝜛) 𝑑𝑡,         (6) 

and Ψ𝜉𝜇 (𝑧) is the Fox-Wright function [5]. 

The following integral transform was studied in [6, 7] 

  𝑆𝑎{𝑓(𝑡)}(𝑠) =
1

𝑠𝑟 ∫ 𝑓(𝑡)𝑎−𝑠𝑡𝑑𝑡 = 𝐹𝑎(𝑠)
∞

0
,             (7) 

where 𝑡 ≥ 0, 𝑟 ∈ ℤ, 𝑎 > 0, 𝑛1 ≤ 𝑠 ≤ 𝑛2, 𝑛1, 𝑛2 > 0 and 𝑓(𝑡) is sectionally continuous and exponential order.  

 Definition 1: [7] If a function 𝑓(𝑡) is 𝑚-times continuously differentiable on [0,∞) and of exponential order 

𝜕 (> 0), then    𝑆𝑎{𝑓′(𝑡)}(𝑠), 𝑆𝑎{𝑓′′(𝑡)}(𝑠), ⋯ , 𝑆𝑎{𝑓(𝑚)(𝑡)}
(𝑠)

 exist for 𝑅𝑒(𝑠) >
𝜕

𝑙𝑜𝑔(𝑎)
 and  

 𝑆𝑎{𝑓(𝑚)(𝑡)}
(𝑠)

= [𝑠𝑙𝑜𝑔(𝑎)]𝑚𝑆𝑎{𝑓(𝑡)}(𝑠) −
1

𝑠𝑟
∑ [𝑠𝑙𝑜𝑔(𝑎)]𝑚−𝑤−1𝑓(𝑚−1)−𝑤(0)

(𝑚−1)
𝑤=0 .  (8) 

Definition 2: [6] Suppose a function 𝑢(𝑥, 𝑡) is defined for 𝑥 ∈ [𝑎, 𝑏], 𝑡 > 0 and 𝑆𝑎{𝑢(𝑥, 𝑡)}(𝑠) = 𝑈𝑎(𝑥, 𝑠), then 

𝑆𝑎 {
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
}

(𝑠)
= −

𝑈(𝑦,0)

𝑠𝑟 + [𝑠𝑙𝑜𝑔(𝑎)]𝑈𝑎(𝑦, 𝑠),           (9) 

𝑆𝑎 {
𝜕2𝑢(𝑦,𝑡)

𝜕𝑡2 }
(𝑠)

= −
1

𝑠𝑟

𝜕𝑈(𝑦,0)

𝜕𝑡
− [𝑠𝑙𝑜𝑔(𝑎)]

𝑈(𝑦,0)

𝑠𝑟 + [𝑠𝑙𝑜𝑔(𝑎)]2𝑈𝑎(𝑦, 𝑠),          (10) 

𝑆𝑎 {
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
}

(𝑠)
=

𝑑𝑈𝑎(𝑦,𝑠)

𝑑𝑦
 ,              (11) 

𝑆𝑎 {
𝜕2𝑢(𝑦,𝑡)

𝜕𝑦2 }
(𝑠)

=
𝑑2𝑈𝑎(𝑦,𝑠)

𝑑2𝑦
 .              (12) 

Many of the known results in the literature utilized Laplace integral transform to solve problems related to fluid 

flows, see for example [8-13]. In this article the SUM integral transform will be utilized to obtain solution of 

unsteady fluid flow through a horizontal channel with injection and suction velocities.  

2. Main Results 

Theorem 3: The following result holds:  

  𝑆𝑎 {𝑡−
3

2 exp (−
𝜑2

4𝑡
)}

(𝑠)
=

2√𝜋

𝜑𝑠𝑛 exp(−𝜑√𝑠𝑙𝑜𝑔(𝑎)),          (13) 

where 𝜑 is a constant denoting the diffusion coefficient, this function occurs frequently in diffusion problems.  

Proof: Using the SUM transform in equation (7), we get 

 𝑆𝑎 {𝑡−
3

2 exp (−
𝜑2

4𝑡
)}

(𝑠)
=

1

𝑠𝑛 ∫ 𝑡−
3

2 exp [− (𝑠𝑡𝑙𝑜𝑔(𝑎) +
𝜑2

4𝑡
)] 𝑑𝑡.

∞

𝑡=0
        (14) 

Letting 𝑠𝑡𝑙𝑜𝑔(𝑎) = 𝜙2 in equation (14), we have  

𝑆𝑎 {𝑡−
3

2 exp (−
𝜑2

4𝑡
)}

(𝑠)
=

2√𝑠𝑙𝑜𝑔(𝑎)

𝑠𝑛 ∫ exp [− (𝜙2 +
𝜑2[𝑠𝑙𝑜𝑔(𝑎)]

4𝜙2 )]
𝑑𝜙

𝜙2

∞

0
 .         (15) 

Substituting 
𝜑2[𝑠𝑙𝑜𝑔(𝑎)]

4
= 𝜂2 in (15), we have 

𝑆𝑎 {𝑡−
3

2 exp (−
𝜑2

4𝑡
)}

(𝑠)
=

2√𝑠𝑙𝑜𝑔(𝑎)

𝑠𝑛 ∫ exp [− (𝜙2 +
𝜂2

𝜙2)]
𝑑𝜙

𝜙2

∞

0
 .          (16) 

Putting 
𝜂

𝜙
= 𝜔 in (16), we obtain 

  𝑆𝑎 {𝑡−
3

2 exp (−
𝜑2

4𝑡
)}

(𝑠)
=

2√𝑠𝑙𝑜𝑔(𝑎)

𝜂𝑠𝑛 Ψ,           (17) 

where  

   Ψ = ∫ exp [− (
𝜙2

𝜔2 + 𝜔2)] 𝑑𝜔.
∞

0
          (18) 

Also  

   
𝑑Ψ

𝑑𝜙
= −2𝜙 ∫ exp [− (

𝜙2

𝜔2 + 𝜔2)]
𝑑𝜔

𝜔2 .
∞

0
          (19) 



Kaurangini and Abubakar CUJSE 21(01): 001-005 (2024) 

 

3 

 

Similarly, putting 
𝜙

𝜔
= 𝜂 in equation (19) leads us to 

  
𝑑Ψ

𝑑𝜙
= −2 ∫ exp [− (

𝜙2

𝜂2 + 𝜂2)] 𝑑𝜂 = −2Ψ.
∞

0
          (20) 

Solving equation (19) using elementary method, we have   

   Ψ(𝜂) = Aexp(−2𝜂).            (21) 

And since Ψ(0) =
√π

2
, we have 

   Ψ(𝜂) =
√π

2
exp(−2𝜂).            (22) 

Putting equation (22) into (17), we obtained the required result in (13).  

Corollary 4: If 𝑎 = 𝑒 and 𝑟 = 0 it reduces in equation (13) it reduces to the following well-known result [14]: 

  𝐿 {𝑡−
3

2 exp (−
𝜑2

4𝑡
)}

(𝑠)
=

2√𝜋

𝜑
exp(−𝜑√𝑠).           (23)  

2.1. Fluid Flow through Porous Horizontal Channel with Injection Viscosity 

The If 𝑥 is the distance along a two-dimensional porous plate with velocity component 𝑢 and 𝑦 is the distance 

normal to the plate with velocity component 𝑣. Assuming that accelerating fluid particles are added from the 

boundary layer through the porous plate by injection. Also, assuming that the velocity component 𝑢 will be equal 

to zero at the surface of the plate for all time, approach a function 𝑓(𝑡) as 𝑦 → ∞, and equal  𝑓(0) at time 𝑡 = 0, 

then the following system described the model: 

  
𝜕𝑢

𝜕𝑡
+ 𝑣𝐼

𝜕𝑢

𝜕𝑦
=

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕2𝑢

𝜕𝑦2      0 < 𝑦 < ∞,    𝑡 > 0            (24) 

   𝑢(𝑦, 0) = 𝑓(0), 0 < 𝑦 < ∞ 

  𝑢(0, 𝑡) = 0, 𝑢(𝑦, 𝑡) = 𝑓(𝑡) as 𝑦 → ∞,   𝑡 > 0   

where 𝑣𝐼 is the constant injection velocity and 𝑣 is the kinematic viscous of the fluid. 

Applying the SUM transform to (24), utilizing (25)-(28), we have  

 𝑆𝑎 {
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
}

(𝑠)
=

1

𝑠𝑟 ∫
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
𝑎−𝑠𝑡𝑑𝑡

∞

0
   

          =
1

𝑠𝑟 { lim
𝑘→∞

([𝑢(𝑦, 𝑡)𝑎−𝑠𝑡]𝑡=0
𝑘 + [𝑠𝑙𝑜𝑔(𝑎)] ∫ 𝑢(𝑦, 𝑡)𝑎−𝑠𝑡𝑑𝑡

𝑘

0
)}  

          = [𝑠𝑙𝑜𝑔(𝑎)]𝑈𝑎(𝑦, 𝑠) −
𝑈(𝑥,0)

𝑠𝑟 = [𝑠𝑙𝑜𝑔(𝑎)]𝑈𝑎(𝑥, 𝑠) −
𝑓(0)

𝑠𝑟  ,        (25) 

 𝑆𝑎 {
𝜕𝑢(𝑥,𝑡𝑠)

𝜕𝑦
}

(𝑠)
=

𝑑𝑈𝑎(𝑦,𝑠)

𝑑𝑦
 ,              (26) 

 𝑆𝑎 {
𝜕2𝑢(𝑦,𝑡)

𝜕2𝑦
}

(𝑠)
=

𝑑2𝑈𝑎(𝑦,𝑠)

𝑑2𝑦
              (27) 

 𝑆𝑎 {
𝜕𝑓(𝑡)

𝜕𝑡
}

(𝑠)
= [𝑠𝑙𝑜𝑔(𝑎)]𝐹𝑎(𝑠) −

𝑓(0)

𝑠𝑟              (28) 

We have 

 𝑣
𝑑2𝑈𝑎(𝑦,𝑠)

𝑑𝑦2 − 𝑣𝐼
𝑑𝑈𝑎(𝑦,𝑠)

𝑑𝑦
− [𝑠𝑙𝑜𝑔(𝑎)]𝑈𝑎(𝑦, 𝑠) = −[𝑠𝑙𝑜𝑔(𝑎)]𝐹𝑎(𝑠),         (29) 

with the condition: 𝑈𝑎(0, 𝑠) = 0, 𝑈𝑎(𝑦, 𝑠) → 𝐹𝑎(𝑠) as 𝑦 → ∞. 

The solution of 𝑈𝑎(𝑦, 𝑠) with the boundary condition is 

  𝑈𝑎(𝑦, 𝑠) = 𝐹𝑎(𝑠) {1 − exp (− [
1

2
√𝛽 + 𝛿[𝑠𝑙𝑜𝑔(𝑎)] − 𝛼] 𝑦)}.         (30) 

where 𝛼 =
𝑣𝐼

2𝑣
 , 𝛽 = (

𝑣𝑠

𝑣
)

2
 and 𝛾 =

4

𝑣
 . 

Taking inverse SUM transform of equation (30) using (13) and the convolution theory, we have  

 𝑢(𝑦, 𝑡) = 𝑓(𝑡) −
𝑦

4
√

𝛾

𝜋
exp(𝛼𝑦) {∫ f(t − u)u−

3

2 exp (− [
𝛾𝑦2

16𝑢
−

𝛽

𝛾
𝑢]) 𝑑𝑢

t

0
}.        (31) 

By the Maclaurin series expansion of exp (
𝛽

𝛾
𝑢) and putting 𝑢 =

𝑡

𝑝+1
 𝑎𝑛𝑑 𝑓(𝑡) = 𝑢0, then equation (31) can be 

expressed in term of extended hypergeometric function (5) as 



Kaurangini and Abubakar CUJSE 21(01): 001-005 (2024) 

 

4 

 

𝑢(𝑦, 𝑡) = 𝑢0 {1 −
𝑦

4
√

𝑡

𝛾𝜋
exp (𝛼𝑦 −

𝛾𝑦2

16𝑡
) ∑

(
𝛽

𝛾
𝑡)

𝑟

𝑟!
∞
𝑟=0 𝐹0,0

1,1Ψ [
(1,0)1,1

(1,0)1,1
|

(1,0)1,1

(1,0)1,1
| 𝑟 +

1

2
, 1; −; −

16𝑡

𝛾𝑦2]}.   

2.2. Fluid Flow through Porous Horizontal Channel with Suction Viscosity 

If 𝑥 is the distance along a two-dimensional porous plate with velocity component 𝑢 and 𝑦 is the distance normal 

to the plate with velocity component 𝑣. Assuming that decelerating fluid particles are removed from the boundary 

layer through the porous plate by suction. Also, assuming that the velocity component 𝑢 will be equal zero at the 

surface of the plate for all time, approach a function 𝑓(𝑡) as 𝑦 → ∞, and equal  𝑓(0) at time 𝑡 = 0, then the 

following system described the model: 

  
𝜕𝑢

𝜕𝑡
− 𝑣𝑠

𝜕𝑢

𝜕𝑦
=

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕2𝑢

𝜕𝑦2      0 < 𝑦 < ∞,    𝑡 > 0            (32) 

   𝑢(𝑦, 0) = 𝑓(0), 0 < 𝑦 < ∞ 

  𝑢(0, 𝑡) = 0, 𝑢(𝑦, 𝑡) = 𝑓(𝑡) as 𝑦 → ∞,   𝑡 > 0   

where 𝑣𝑠 is the constant suction velocity and 𝑣 is the kinematic viscous of the fluid. 

Applying the SUM transform to equation (32), utilizing (25)-(28) and after some simplifications, we have  

 𝑣
𝑑2𝑢𝑎(𝑦,𝑠)

𝑑𝑦2 + 𝑣𝑠
𝑑𝑢𝑎(𝑦,𝑠)

𝑑𝑦
− [𝑠𝑙𝑜𝑔(𝑎)]𝑢𝑎(𝑦, 𝑠) = −[𝑠𝑙𝑜𝑔(𝑎)]𝐹𝑎(𝑠).         (33) 

Solving equation (33), using undetermined coefficient method and applying the boundary condition, we have 

  𝑢𝑎(𝑦, 𝑠) = 𝐹𝑎(𝑠) {1 − exp (− [𝛼 +
1

2
√𝛽 + 𝛿[𝑠𝑙𝑜𝑔(𝑎)]] 𝑦)},          (34) 

Where 𝛼 =
𝑣𝑠

2𝑣
, 𝛽 = (

𝑣𝑠

𝑣
)

2
and 𝛾 =

4

𝑣
 . 

Then, taking inverse SUM transform on equation (34) using (13) and the convolution theory, we have  

 𝑢(𝑦, 𝑡) = 𝑓(𝑡) −
𝑦

4
√

𝛾

𝜋
exp(−𝛼𝑦) {∫ f(t − u)u−

3

2 exp (− [
𝛽

𝛾
𝑢 +

𝛾𝑦2

16𝑢
]) 𝑑𝑢

t

0
}.         (35) 

Applying the Maclaurin series expansion of exp (−
𝛽

𝛾
𝑢) and putting 𝑢 =

𝑡

𝑝+1
 , then if 𝑓(𝑡) = 𝑢0, then equation 

(35) can be expressed in term of the extended hypergeometric function (5) by 

    𝑢(𝑦, 𝑡) = 𝑢0 {1 −
𝑦

4
√

𝑡

𝛾𝜋
exp [− (𝛼𝑦 +

𝛾𝑦2

16𝑡
)] ∑

(−
𝛽

𝛾
𝑡)

𝑟

𝑟!
∞
𝑟=0 𝐹0,0

1,1Ψ [
(1,0)1,1

(1,0)1,1
|

(1,0)1,1

(1,0)1,1
| 𝑟 +

1

2
, 1; −; −

16𝑡

𝛾𝑦2]}. (36) 

3. Conclusions 

In this paper, the solutions to unsteady fluid flow problems in a porous horizontal channel with injection and 

suction velocities are considered. These solutions were obtained utilizing the SUM integral transform method, 

which is consistent to the existing solutions obtained in the literature using other methods like the Laplace integral 

transform (refer to [15] for more information). The models in this study can be extended to include the impact of 

time fractional derivatives using approaches such as Caputo, Caputo-Fabrizio, Atangana-Baleanu and Phrabakar 

fractional derivatives. This research has the potential to greatly benefit the study of soil water flow in soil science 

and improve productivity in horizontal well drilling operations in the oil and gas industry. 
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